

page 1

UNECC

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 02 - in effect as of: 1 July 2004)

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a monitoring methodology and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan

Apendixes

- 1. Minutes of Meeting Stakeholders Assessment
- 2. Letter of Approval DNA

SECTION A. General description of <u>project activity</u>

A.1 Title of the <u>project activity</u>:

Landfill Gas Extraction and Utilization at the Matuail landfill site Dhaka, Bangladesh

A.2. Description of the **project activity:**

>>

>>

The project aims at the realisation of a landfill gas extraction and utilisation project at Matuail landfill site near the capital Dhaka in the Peoples Republic of Bangladesh. The extracted gas will be used on-site for electricity generation in co-generation units.

The project comprises the design and engineering of the extraction system according to modern standards, all equipment delivery (wells, piping, compressor(s), flare, CHP units, grid connection, etc.). Reshaping the landfill and introducing proper landfilling techniques are part of the project activity.

Based on investigations and calculations the project will realise 1,300,000 tonnes CO_2 equivalents over the 7-years period 2006 - 2012 (first crediting period). The investments will be realised mainly during the period 2005 till 2007. Delivery of CERs will start from mid 2006.

The project does not use any scare resources (like fuel, water); neither it produces any waste or emissions to water and soil. The gas engines do produces local combustion gases. The main environmental negative component can be NOx that is an acidifying gas. The engines however, will comply with US and Western European emission standards; therefore the amount emitted is very limited. It is noted here that elsewhere inefficient and polluting electricity production is prevented. This results overall in a net reduction of combustion gases including NOx.

Extracting the landfill gas has a local environmental impact, mainly reduction of several side effects like odour- and dust emission, fires, etc. No negative impact will occur. The compressor(s) and gas engines will be placed in enclosed acoustic housings (sound reducing containers), so no noise pollution will occur.

The project will be the first in the Bangladesh to extracts and utilizes LFG for electricity generation on a commercial basis. As a pioneering effort by the project proponent, the project will contribute significantly to the sustainable development of the Bangladesh. The following environmental, economic, and social benefits can be attributed directly to the project:

- 1 <u>Environmental benefits</u> assist in mitigating uncontrolled GHG emission from the landfill, help to prevent on-site fires, control the release of volatile organic compounds, provide greater control of leachate drainage, and physically stabilize the Matuail landfill;
- 2 <u>Economical benefits</u> LFG as a new indigenous fuel source for Bangladesh; foreign expertise and training to facilitate smooth technology transfer; foreign capital inflow for investment;
- 3 <u>Social benefits</u> improved health conditions due to mitigation of gaseous emissions and greater control of leachate; improved safety around the site due to stabilizing the waste pile; jobs for locals and staff training to improve skills of locals.

It is thought that this project will become a test case in Bangladesh that will be closely monitored by other dumpsite/landfill owners.

CDM – Executive Board

 A.3.
 Project participants:

 >>
 Project proponent/

 Project proponent/
 World Wide Recycling B.V. (WWR) a Dutch private company and Waste

 Sponsor
 Concern (WC) a Bangladeshi independent non-governmental organisation (NGO). They will form a Special Purpose Company (SPC).

 DNA
 Government of the People's Republic of Bangladesh Department of Environment

 DNA
 Government of the Netherlands – is expected to give authorisation to WWR.

Annex 1 provides more information on the project participants.

A.4. Technical description of the <u>project activity</u>:

A.4.1. Location of the project activity:

>>

Matuail landfill site, Dhaka, Bangladesh

	A.4.1.1.	Host Party(ies):
>>		

Peoples Republic of Bangladesh

A.4.1.2.	Region/State/Province etc.:	
	_	

Dhaka greater area

>>

>>

Dhaka

A.4.1.4. Detail of physical location, including information allowing the unique identification of this project activity (maximum one page):

>>

The LFG project will be erected at the landfill site of Matuail near Dhaka (see maps in figures A-1 & A-2 on next page).

Currently the Matuail landfill is operated by Dhaka City Corporation (DCC). In fact only uncontrolled dumping of collected waste, up to a height of some 6 meters, is performed. WWR and WC intend to take over the activities at Matuail landfill and will introduce proper landfilling techniques. The landfill will be reshaped according to Western standards in order to optimize it for a/o landfill gas extraction.

UNFCCC

CDM – Executive Board

page 4

Figure A-1 & A-2: Map of Bangladesh and location of Matuail landfill near the capital Dhaka

Picture A-1: Access road to Matuail landfill

A.4.2. Category(ies) of project activity:

>>

Project activity: 13 - Waste handling and disposal

A.4.3. Technology to be employed by the project activity:

>>

The technology proposed for the extraction and utilisation of biogas can be regarded as standard, proven and sound technology, environmentally safe.

The extraction technology applied will basically consist of:

- vertical + wells;
- collectors + piping;
- condensate separator;
- compressors;
- leachate treatment installation and pond.

page 5

The landfill gas utilisation equipment consists of:

- flare;
- dedicated LFG gas engines connected to electric generators (3 x 1 MWe);
- hook-up to grid devices.

The landfill will be reshaped and will go up in height (from approx. 6m up to 25m) in order to make it more suitable for landfill gas extraction and to prolong the landfilling period up to 2011.

WWR has extensive knowledge of landfill gas extraction and utilisation techniques. Its mother company VAR operates a large recycle centre, including a landfill with landfill gas extraction in the Netherlands.

Royal Haskoning (www.royalhaskoning.com), the engineering consultant of the project proponents, has designed numerous landfill gas extraction and utilisation projects all over the world a/o for the World Bank Prototype Carbon Fund (PCF) Liepaja project in Latvia.

WC operates several small-scale composting plants that have been designed by Waste Concern and in use since 1995 in Bangladesh. It has extensive knowledge in managing waste projects in Bangladesh.

The know-how related to the applied technology and the know-how related to the operation of the plant will be transferred to the host party since, in the future by far, the majority of the employees will be residents of the host-country.

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM <u>project activity</u>, including why the emission reductions would not occur in the absence of the proposed <u>project activity</u>, taking into account national and/or sectoral policies and circumstances:

>>

The project is based on two complementary activities:

- the collection and flaring (combustion) of landfill gas, thus converting its methane content into (non-fossil) CO₂, reducing its greenhouse gas effect,
- electricity generation and supply of electricity to the grid, thus replacing a certain amount of fossil fuel for electricity generation.

In Bangladesh there is no legislation enforcing landfill gas extraction with or without utilization or whatso-ever. Since it is not obligated to collect/combust LFG, the approach is to continue emitting LFG directly into the atmosphere. Commercial LFG extraction projects have not been implemented to date because they are not economically attractive and there are few to no incentives to justify the high risk involved in using this for Bangladesh new technology. The project will not be viable unless CDM assistance is acquired (see section B.2 for further details). The Project is additional in that emissions reductions would not occur in the absence of the proposed CDM activity.

A.4.4.1. Estimated amount of emission reductions over the chosen <u>crediting</u> <u>period</u>:

>>

1,300,000CER's over the period 2006 – 2012 (first crediting period).

A.4.5. Public funding of the <u>project activity</u>:

>>

There is no public funding in this project.

SECTION B. Application of a <u>baseline methodology</u>

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

>>

- The baseline methodologies used are:
- the ACM0001: "Consolidated baseline methodology for landfill gas project activity", which was approved on 3 September 2004;
- the ACM0002: "Consolidated methodology for grid-connected electricity generation from renewable sources", which was approved on 3 September 2004.

Both consolidated methodologies can be found on the UNFCC website: http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html

Project activity: 13 - Waste handling and disposal

B.1.1. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity:</u>

>>

The project meets all the applicability criteria as set out in the methodologies.

ACM0001 is applicable to the following situations in regards to LFG activities where:

- a) The captured gas is flared; or
- b) The captured gas is used to produce energy (e.g. electricity/thermal energy), but no emission reductions are claimed for displacing or avoiding energy from other sources; or
- c) The captured gas is used to produce energy (e.g. electricity/thermal energy), and emission reductions are claimed for displacing or avoiding energy from other sources.

The project activity corresponds to situation a) and c) above and is therefore applicable to ACM0001. Since there are no regulatory requirements in the Bangladesh at present, the baseline scenario is the total atmospheric release of LFG. The project activity will extract, collect and utilize LFG and result in additional GHG reductions.

ACM0001 says that in the case of c), the approved consolidated baseline methodology for grid-connected electricity generation from renewable sources can be applied (ACM0002).

ACM0002 is applicable to grid-connected renewable power generation project activities amongst others under the following conditions:

• Applies to grid connected electricity generation from landfill gas capture to the extent that it is combined with the approved "Consolidated baseline methodology for landfill gas project activities" (ACM0002)

The project activity corresponds to the situation described above and is therefore applicable to ACM0002.

Furthermore the project activity is not financially viable without CER revenue. LFG revenues (gas, electricity and/or heat) alone are insufficient to recover project investments and operational costs.

B.2. Description of how the methodology is applied in the context of the <u>project activity</u>:

>>

To apply the methodology to this CDM project activity, the below steps are followed.

Step 1: Application criteria

The project activity extracts landfill gas and combusts it in a flare or (preferred) in gas engines for electricity generation, where the baseline scenario is landfilling where the methane produced in the landfill is totally released into the atmosphere.

The following conditions apply:

- the waste would be landfilled in the baseline and landfill gas would be released into the atmosphere. No other alternatives besides landfilling and the project itself are available. Methane capture from the existing landfill is not financially viable without CER revenue. LFG revenues (gas, electricity and/or heat) alone are insufficient to recover project investments and operational costs. The methane emissions from the landfill would thus be emitted into the atmosphere in the baseline.

As stipulated by ACM0001, the "tool for the demonstration and assessment of additionality" is applied in a conservative and transparent manner to show that CDM assistance is required for the project activity to be successfully implemented. Following the preliminary screening process, a convincing justification is provided to demonstrate that there is no plausible baseline scenario except the project activity and the continuation of key present policies and practices. An investment analysis is then presented to demonstrate that the project activity is additional. Next, a common practice analysis will be conducted to double-check the credibility of the investment/barrier analysis. Lastly, an explanation is offered as to how the impact of CDM registration will enable the Project to be successfully implemented.

The following steps from the "tool for the demonstration and assessment of additionality" will be completed below in section B.3.

- Step 0 Preliminary screening based on the starting date of the project activity
- Step 1 Identification of alternatives to the project activity consistent with current laws and regulations
- Step 2 Investment Analysis
- Step 4 Common Practice Analysis
- Step 5 Impact of CDM Registration

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u>:

>>

The determination of project scenario additionality is done using the CDM consolidated tool for demonstration of additionality, which follows the following steps:

Step 0. Preliminary screening based on the starting date of the project activity

The project is only expected to start operation after registration with the UNFCCC. In any case, as it will be demonstrated in the following steps, CDM revenue has been considered from the early stages of development of the project, and it is an integral part of the financial package of the project.

Step 1. Identification of alternatives to the project activity consistent with current laws and regulations

Sub-step 1a. Define alternatives to the project activity:

page 8

UNECC

Table B.1 give a scenario analysis.

Table B.1:Scenario analysis

Scenarios without the Project	Is it probable?
Landfill gas recovery does not take place	Most probable: currently the technical, organisational,
	legal, economic and financial conditions for landfill gas
	recovery are not available in Bangladesh (see Section
A modified amount of LEG is extracted	4.1, Key factor 1).
A modified amount of EFO is extracted	given the high necessary investment costs for recovery
	of any landfill gas.
Air or O_2 injection in the landfill	Not probable: Given the absence of enabling conditions
(= alternative technology)	for landfill gas, this option is even less attractive. It is
	more expensive than landfill gas recovery and does not
	generation
Composition of disposed waste will	Not probable: Without carbon credits reduction in waste
significantly change or recycling will	amount or change in composition is unlikely.
strongly increase	
Different use of landfill gas on site	Not probable: alternative use could be, for example,
	upgrading to natural gas quality to be used on site. This
	process is extremely expensive for the landfill gas
	for the formula for the function of the formula for the formul
Different use of landfill gas off site	Not probable: alternative use would be for example
Billefellt use of fulldrift gus off site	upgrading to natural gas guality and feed it into the
	national gas grid. This process is extremely expensive
	for the landfill gas volumes at the landfills (not
	economically feasible)
No electricity generation will occur (for	Most probable: without the recovery of landfill gas,
example, because supply to the grid is not possible)	electricity generation is not possible at all.
The project is deferred with seven years	Not probable: Lack of enabling conditions makes it not
(delay)	likely that LFG recovery will take place before 2012
	without carbon revenues.

As the above analysis shows, there are no reasonable alternatives unless CERs could be generated in some of the alternatives. Hence the only likely alternative is continuation of the current practice.

Sub-step 1b. Enforcement of applicable laws and regulations:

As mentioned in paragraph A.4.4. there is no legislation enforcing landfill gas extraction with or without utilization or what-so-ever. Hence, all the alternatives comply with the laws and regulatory requirements for the project location. It is unlikely that regulations will change in a way that would render any of the scenarios non-compliant. However, as stipulated in the Monitoring Plan, laws and regulations in regards to LFG extraction/combustion will be monitored yearly and if there are changes that affect LFG treatment an adjustment factor will be incorporated to represent the portion of LFG that must be collected to be in compliances.

Step 2. Investment Analysis

_

page 9

Sub-step 2a: Determine appropriate analysis method

According to the methodology for determination of additionality, if the alternative to the CDM project activity does not include investments of comparable scale to the project, then Option III (of the methodology tool) must be used. As this is the case for the project, Option III is applied here.

Sub-step 2b: Option III - Application of benchmark analysis

The likelihood of development of this project, as opposed to the continuation of its baseline will be determined by comparing its NPV with the benchmark of interest rates available to a local investor, i.e., those provided by local banks in the Host Country, which averages 12% (source: economic trends on www.bangladesh-bank.org)

Sub-step 2c: Calculation and comparison of financial indicators

The Table below shows the financial analysis for the project activity. As shown, the project NPV (without carbon) is very negative, i.e. the project is unattractive compared to the interest rates provided by local banks in the Host Country.

Table B.2:Financial results of the project (Alternative 1) without carbon finance. NPV uses 14.0%
discount rate.

	without C
Net Present Value (US\$)	-5,021,486
Discount rate	14.0%

Summary of results of project analysis. Details made available to validators.

Assumptions:

- Discount rate: related to historical commercial lending fees (source: economic trends on www.bangladesh-bank.org), assumed to be approx 12%. In addition a technology risk factor of 2% is taken into account, since Landfill gas extraction projects have not been executed in the Host country, hence the associated technology used is new to the country and to local operators. These two factors add up to a 14% discount rate.
- Inflation: based on historical data (Source: World Economic Outlook (WEO) -- September 2004 -- Statistical Appendix) an average inflation rate of 5% has been assumed. For foreign currency an average inflation rate of 2% has been assumed.
- Currency devaluation rate: Local currency to hard currency devaluation has been assumed to be 4.5% (source: International Monetary Fund country report No. 04/27 February 2004).
- Project duration: 15 years.
- Revenue streams: Taken into account are the expected revenues: sale of electricity generated through combustion of methane.
- Investments: Taken into account are the expected investments required to manage the landfill and extract the Landfill gas.
- Costs: Taken into account are the associated operational expenses (mainly labour, energy costs/ fuel for on-site vehicles, etc.).

Sub-step 2d: Sensitivity analysis

A sensitivity analysis was conducted by altering the following parameters:

- Increase in project revenue;
- Reduction in project investments and running costs (Operational and Maintenance costs).

UNFCC

CDM – Executive Board

page 10

These parameters were selected as being the most likely to fluctuate over time. Financial analyses were performed altering each of these parameters by 10%, and assessing what the impact on the project NPV would be (see Table below). As it can be seen, the project NPV remains lower than its alternative even in the case where these parameters change in favour of the project.

Table B.3:Sensitivity analysis on revenue and costs.

Scenario	NPV (€) (optional)
Original	-5,021,486
Increase in project revenue	-4,718,403
Reduction in project costs	-3,896,292

Note: NPV uses 14% discount rate.

Step 3. Barrier Analysis

Hereafter the relevant key factors are discussed. Each of the factors described below indicates how it influences the baseline development for the Bangladesh landfill gas project and the GHG emissions at project activity level.

Legal framework

The most relevant parts of the legal framework for disposal of waste in Bangladesh are:

- Law on Reduction of the harmful impact of waste upon the environment. In this law, there are no requirements for landfill gas recovery nor for reduction of organic content in waste.
- Environmental Conservation Act 1995 (ECA '95) and the Environmental Conservation Rules 1997 (ECR '97) of the Government of Bangladesh. The ECA '95 and ECR '97 give definitions, instructions how to handle wastes, emission limits and guidelines regarding the (screening for the need of a detailed) Environment Impact Assessment.

In none of these documents landfill gas extraction or methane reduction techniques from landfills are mentioned.

Envisaged implementation framework

The implementation of the legal framework is determined by three factors: (1) availability of securing necessary financial resources, (2) the adoption and implementation legislation and (3) the resolving of existing market barriers for landfill gas extraction projects in Bangladesh.

(1) Availability of securing necessary financial resources.

The Bangladesh waste sector is fully municipality driven. There are no private entrepreneurs involved. Although the need for privatisation is recognised, it is not likely that this process will take place soon. Municipalities do not have sufficient knowledge and financial resources to provide the necessary investments into separate collection and subsequent processing and marketing. The main reasons for this are waste taxes that are still too low and do not generate sufficient income to the municipalities. (Besides, the Bangladesh Government will need additional financial resources for the set up of proper waste management systems and a/o remediation and/or closure of existing and partly illegal landfills).

It can therefore be concluded, that international organisation and/or private financial resources will probably play a dominant role in the implementation of landfill gas collection and utilisation during the next 15 years. Furthermore, international organisation and/or private sector investments will strongly contribute to the improvement of waste management in general and to the implementation of the legal

INFOO

framework in particular.

(2) Legislation

Although there is a general policy to simulate re-use of wastes in Bangladesh there is no legislation enforcing landfill gas extraction with or without utilization or what-so-ever.

(3) Market barriers.

Since this is the first landfill gas recovery project in Bangladesh, it faces a number of market barriers. Economic unattractiveness, lack of technical know-how and lack of availability of equipment are the most important. The implementation of this project will assist Bangladesh in demonstrating the practice of landfill gas recovery that could assist Bangladesh in meeting the objectives regarding electricity production and energy from renewable sources. Important elements are:

- Demonstrating the practice of landfill gas recovery in Bangladesh;
- Demonstrating how trading emission reductions via the Kyoto mechanisms could assist in making the practice of landfill gas recovery economically viable and promote sustainable development;
- Transferring the necessary technology and know-how to Bangladesh, including:
 - Making available the required equipment (at this moment there are no providers of landfill gas recovery equipment in Bangladesh);
 - Development of local know-how by means of the involvement of Bangladesh partners during the project implementation;
 - Providing feedback to the Government of Bangladesh through close co-operation with relevant departments.

Step 4. Common Practice Analysis

Sub-step 4a. Analyse other activities similar to the proposed activity

To date there has not been any implementation of LFG projects in the Host Country, neither there is any LFG project in development. The technical expertise and equipment is lacking in the Host Country.

Sub-step 4b Discuss any similar options that are occurring

There are no similar options occurring.

Step 5. Impact of CDM registration

As shown in Step 2 above, the project is unlikely to move forward without the additional financial support of the CDM. If the developer was able to sell emission reduction credits from the project activity at an assumed price of U\$ 3.00 till 5.00 dollars per tonne of CO_2e , the additional revenue generated by carbon sales would be over U\$ 5,000,000 (in case of 5.00 dollars per tonne of CO_2e). This demonstrates that CDM provides a considerable contribution to the profitability of the project and thus enable the project activity to be undertaken.

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

>>

The project boundary is the Matuail landfill site where waste is landfilled and treated. The project generates and uses electricity. The net electricity delivery to the grid is accounted for CO_2 reduction in accordance with ACM0002.

page 12

The flow chart in figure B-1 (next page) shows the main components and connections including system boundaries of the project. The flowchart excludes processes beyond control or influence of the project, but includes the relevant beyond control processes to generate secondary energy carriers.

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

>>

The baseline study was concluded on February 15, 2005 by Royal Haskoning, who is not a project participant. Royal Haskoning is consultant to the project participants.

Mr. H. Oosterdijk Haskoning Nederland B.V. (Royal Haskoning) P.O. Box 151 6500 AD Nijmegen The Netherlands Telephone: +31 24 32 84 671 Fax: +31 2432 36 146 E-mail: h.oosterdijk@royalhaskoning.com www.royalhaskoning.com

SECTION C. Duration of the project activity / Crediting period

C.1 Duration of the <u>project activity</u>:

C.1.1. <u>Starting date of the project activity</u>:

The time line of the project is as follows:

• Start operating of project-activity : August 1st 2006

C.1.2. Expected operational lifetime of the project activity:

The LFG facility will continue to operate up to at least 2020.

C.2 Choice of the <u>crediting period</u> and related information:

C.2.1. <u>Renewable crediting period</u>

C.2.1.1. Starting date of the first <u>crediting period</u>:

01/08/2006.

C.2.1.2.	Length of the first crediting period:

>> 7 years.

>>

>>

C.2.2.	Fixed crediting	period:
	C.2.2.1.	Starting date:

Fixed crediting period is not applicable, see paragraph C.2.1.1. for renewable crediting period

	C.2.2.2.	Length:		
>>				

Fixed crediting period is not applicable, see paragraph C.2.1.2. for renewable crediting period

SECTION D. Application of a monitoring methodology and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

Reference: ACM0001: "Consolidated monitoring methodology for landfill gas project activities".

and

>>

reference: ACM0002: "Consolidated monitoring methodology for zero-emissions grid-connected electricity generation from renewable sources".

Project activity: 13 - Waste handling and disposal.

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

- >>
- 1) For landfill gas methane capture projects such as this one it is most appropriate to accurately measure the methane combusted in flares and gas engines, i.e. the emission reduction attributable to the project.

Thus the methodology utilises direct monitoring of the emission reduction from the project activity. The emission reduction due to the project activity are monitored and calculated as differentials taking into account methane combustion in gas engines and methane combustion in a flare.

2) The emissions reduction from prevented electricity generation elsewhere in the grid is based on monitoring the net electricity delivery to the grid due to the project activity and calculated *ex-post* (average) Operating Margin (OM), Build Margin (BM) and baseline emission factors of the electricity park in Bangladesh, in accordance with ACM0002.

UNECCO

D.2. 1. Option 1: Monitoring of the emissions in the project scenario and the baseline scenario

>>

Option 1 is not applicable for methodology ACM0001, hence table D.2.1.1. + D.2.1.2 + D.2.1.3 + D.2.1.4 are not filled in for ACM 0001 Option 1 is (partly) applicable for methodology ACM0002

D.2.1.1. Data to be collected in order to monitor emissions from the <u>project activity</u>, and how this data will be archived: Not applicable for ACM0001 and not applicable for ACM0002									
ID number	Data	Source of	Data	Measured (m),	Recording	Proportion	How will the	Comment	
(Please use	variable	data	unit	calculated (c)	frequency	of data to	data be		
numbers to				or estimated (e)		be	archived?		
ease cross-						monitored	(electronic/		
referencing							paper)		
to D.3)									

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not applicable for ACM0001, only applicable for ACM0002

>>

The project activity generates electricity that will, after discounting own consumption, be delivered to the grid, thus mainly replacing fossil fuel consumption for electricity production in the grid.

The methodology ACM0002 "Consolidated monitoring methodology for zero-emissions grid-connected electricity generation from renewable sources" is applied. It requires monitoring of the following:

- Electricity generation from the proposed project activity;
- Data needed to recalculate the operating margin emission factor, if needed, based on the choice of the method to determine the operating margin (OM), consistent with ACM0002;
- Data needed to recalculate the build margin emission factor, if needed, consistent with ACM0002.

UNFCCC

	D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project									
boundary and how such data will be collected and archived :										
Not applicable	for ACM000	01, only applical	ole for ACM0	0002						
ID number (Please use numbers to ease cross- referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		
1. EG _y	Electricity quantity	Electricity supplied to the grid by the project	MWh	Directly measured	Hourly measuremen t and monthly recording	100%	electronic	Electricity supplied by the project activity to the grid. Double check by receipt of sales.		
2. EF _y	Emission factor	CO ₂ emission factor of the grid	tCO ₂ /MW h	С	Yearly	100%	electronic	Calculated as a weighted sum of the OM and BM emission factors		
3. EF _{OM, y}	Emission factor	CO ₂ Operating Margin emission factor of the grid	tCO ₂ /MW h	С	yearly	100%	electronic	Calculated as indicated in the relevant OM baseline method above		
4. EF _{BM,y}	Emission factor	CO ₂ Build Margin emission factor of the grid	tCO ₂ /MW h	С	Yearly	100%	Electronic	Calculated as $[\sum_{I} F_{I,y}*COEF_{i}] / [\sum_{m,y}]$ over recently built power plants defined in the baseline methodology		
5. F _{i,y}	Fuel quantity	Amount of each fossil fuel consumed by each power source/plant	Mass or volume	Μ	Yearly	100%	Electronic	Obtained from the power producers, dispatch centers of latest local statistics		
6. COEF _i	Emission factor coefficient	CO ₂ emission coefficient of each fuel type i	tCO ₂ /mass or volume unit	М	Yearly	100%	Electronic	Plant or country specific values to calculate COEF are preferred to IPPC default values.		

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

UNFCCC

CDM – Executive Board

page 17

7. GEN _{j/k/n, y}	Electricity quantity	Electricity generation of each power source/ plant j, k or n	MWh/y	М	Yearly	100%	Electronic	Obtained from the power producers, dispatch centers or latest local statistics.
8.	Plant name	Identification of power source/ plant for the OM	Text	Е	Yearly	100% of set of plants	Electronic	Identification of plants (j, k, or n) to calculate Operating Margin emission factors
9.	Plant name	Identification of power source/plant for the BM	Text	E	Yearly	100% of set of plants	Electronic	Identification of plants (m) to calculate Build Margin emission factors
10. GEN _{j/k/II, y} IMPORTS	Electricity quantity	Electricity imports to the project electricity system	kWh	C	Yearly	100%	Electronic	Obtained from the latest local statistics. If local statistics are not available, IEA statistics are used to determine imports.
10b. COEF _{i,j,y} IMPORTS	Emission factor coefficient	CO_2 emission coefficient of fuels used in connected electricity systems (if imports occur)	tCO ₂ /mass or volume unit	C	Yearly	100%	Electronic	Obtained from the latest local statistics. If local statistics are not available, IPCC default values are used to calculate.

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>>

Not applicable.

UNFCCC

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

The following figure shows the different monitoring variables. The explanation follows in the table below:

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 19

UNFCCC

	D.2.2.1. Data to be collected in order to monitor emissions from the project activity, and how this data will be archived:										
ID number (Please use numbers to ease cross- referencing to D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c) or estimated (e)	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment			
1. LFG _{total,y}	Total amount of landfill gas captured	Volume	M ³	m	continuous	100%	electronic	Data will be aggregated monthly and yearly through measurement device M3 (see above)			
2. LFG _{flare,y}	Amount of landfill gas flared	Volume	M ³	m	continuous	100%	electronic	Data will be aggregated monthly and yearly through measurement device M6 (see above)			
3. LFG _{electricity,y}	Amount of landfill gas combusted in power plant	Volume	M ³	m	continuous	100%	electronic	Data will be aggregated monthly and yearly through measurement device M8 (see above)			
4. LFG-	Not applicable							Not applicable (see paragraph E.4)			
5. FE	Flare/combusti ng efficiency, determined by the operating hours (1) and the methane content in the exhaust gas (2)	Percentage	%	m	Discontinue, 4 times/year	100%	Paper	 Periodic measurement of methane content of flare exhaust gas and Continuous measurement of operation time of flare (e.g. with temperature) 			
6. W _{CH4,y}	Methane fraction in the landfill gas	m ³ CH ₄ / m ³ LFG	%	m	periodically	100%	electronic	Data will be measured monthly by gas quality analyser through measurement device M1 (see above)			
7. T	Temperature of the landfill gas	temperature	°C	m	periodically	100%	electronic	Data will be measured monthly through measurement device M5 with the purpose to determine the density of methane D_{CH4}			
8. p	Pressure of landfill gas	Pressure	Bar	m	continuous	100%	electronic	Data will be measured monthly through measurement device M4 with the purpose to			

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 20

UNFCCC

								determine the density of methane D_{CH4}
9.	Total amount of electricity and/or other energy carriers used in the project for gas pumping (not derived from the gas)	electricity	MWh	m	continuous	100%	electronic	Data will be aggregated monthly and yearly through measurement device M2 Data will be used to determine CO_2 emissions from use of electricity or other energy carriers to operate the project activity.
10	CO ₂ emission intensity o fthe electriity and /or other energy carriere in ID 9.							CO2-emission intensity is already covered by the table D.2.1.3, which makes this item not applicable in this table
11	Regulatory requirements relating to landfill gas projects		Test	n.a.	annually	100%	Electronic	Required for any changes to the adjustment factor (AF) or directly MD _{reg,y} .

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

>>

See sections E.1 and E.2, no project emissions are foreseen.

activity

page 21

UNFCCC

CDM – Executive Board

D.2.3. Treatment of <u>leakage</u> in the monitoring plan

Under ACM0001 no leakage effects need to be accounted for under this methodology.

D.2.3.1. If applicable, please describe the data and information that will be collected in order to monitor leakage effects of the project

ID number	Data	Source of	Data	Measured (m),	Recording	Proportion	How will the data	Comment
(Please use	variable	data	Data	calculated (c)	frequency	of data to be	be archived?	
numbers to			um	or estimated (e)		monitored	(electronic/ paper)	
ease cross-								
referencin								
g to table								
D.3)								

D.2.3.2. Description of formulae used to estimate leakage (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>>

No leakages are associated with the project activity, in line with ACM0001.

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

>>

See section E.4

page 22

UNFCCC

D.3. Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored				
Data	Uncertainty level of data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.		
(Indicate table and ID	(High/Medium/Low)			
number e.g. 31.; 3.2.)				
D.2.2.1-1 LFG _{total,y}	Low	Flow meter (nr M3 indicated in figure D-1) will be subject to regular maintenance and testing to ensure accuracy.		
D.2.2.1-2 LFG _{flare,v}	Low	Certified institute will do the analysing (instrument M6 indicated in figure D-1)		
D.2.2.1-3 LFG _{electricity,y}	Low	Flow meter (nr M8 indicated in figure D-1) will be subject to regular maintenance and testing to ensure accuracy.		
D.2.2.1-5 FE	Low	Meter (nr M7 indicated in figure D-1) will be subject to regular maintenance and testing to ensure accuracy.		
D.2.2.1-6 W _{CH4,y}	Low	Landfill gas analyzers (instrument M6 indicated in figure D-1) will be subject to regular maintenance and testing		
		to ensure accuracy.		
D.2.2.1-7 T	Low	Meter (nr. M5 indicated in figure D-1) will be subject to regular maintenance and testing to ensure accuracy.		
D.2.2.1-8 p	Low	Meter (nr. M4 indicated in figure D-1) will be subject to regular maintenance and testing to ensure accuracy.		
D.2.2.1-9	Low	kWh meter (instrument nr. M2 indicated in figure D-1) will be subject to regular maintenance and testing to		
		ensure accuracy. Their reading will be double checked by the electricity distribution company		
D.2.2.1-11	Low	Public data source, national developments regarding landfill-guidelines will be used		
D.2.1.3 - 1 to 8	Low	Public data source (Bangladesh Power Development Board (BPDB)) will be used.		

page 23

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

>>

>>

The Project Proponents will erect a Special Purpose Company (SPC) for the project and will be shareholders of the company and will seat in the board of directors.

The SPC structure will be as follow:

The Business Unit Manager Landfill Gas Extraction is responsible for the activities related to implementation of the procedures as described in the monitoring plan (see annex 4). The QA & QC officer will report directly to the Director Operations. He will carry out the internal audits and the quality control and quality assures procedures as described in the monitoring plan.

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

Mr. H. Oosterdijk Haskoning Nederland B.V. (Royal Haskoning) P.O. Box 151 6500 AD Nijmegen The Netherlands Telephone: +31 24 32 84 671 Fax: +31 2432 36 146 email: h.oosterdijk@royalhaskoning.com www.royalhaskoning.com

SECTION E. Estimation of GHG emissions by sources

E.1. Estimate of GHG emissions by sources:

>>

The only emissions from the project is the combustion of landfill gas in which the methane is fully combusted into CO_2 .

According the IPCC Good Practice Guidance¹ the CO_2 emissions from landfill gas combustion are of biogenic origin and are therefore are not considered as a GHG gas.

The project activity does not use any vehicles on-site. The dozers used on the landfill site are not attributable to the project activity.

Therefore the project activity emission is = 0.

E.2. Estimated leakage:

>>

No leakage effects need to be accounted under this methodology (ACM0001).

E.3. The sum of E.1 and E.2 representing the project activity emissions:

Sum of E1 (0) and E2 (0) is 0 tonnes of CO_2 per year.

 Table E.1:
 Resulting project emissions and leakages in first crediting period

	E.3 CERs related to consumed electricity and fuel (on and off-site)
	Tonnes
Year	
2006	0
2007	0
2008	0
2009	0
2010	0
2011	0
2012	0
Total 2006-2012	0

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline</u>:

Following the instructions outlined in the Baseline Methodology (ACM0001), *ex ante* emission reductions estimates for methane extraction/destruction are projected for reference purposes only. The project activity, once commissioned, will determine emission reductions on an *ex post* basis by measuring project data as

¹ IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, footnote 4 on page 95)

stipulated in the monitoring plan. This data will be used to calculate emission reductions for the project activity..

A. Calculation of GHG emission reduction associated with methane combustion

The landfill gas extraction and combustion is directly monitored and used to calculate the CER's. For predicting the amount of CER's the Approved Consolidated Methodology ACM0001 has been used. A description of the used model follows hereafter.

The greenhouse gas emission reduction achieved by the project activity during a given year "y" (ER_y) is calculated by using the formulas as given in method ACM0001:

$$ER_{y} = (MD_{project,y} - MD_{reg,y}) * GWP_{CH4} + EG_{y} * CEF_{electricity,y} + ET_{y} * CEF_{thermal,y}$$

Where:

ER_{v}	=	Emission reduction in tonnes of CO_2 equivalent during year y
MD _{project,yy}	=	the methane destroyed by the project activity in tonnes CH_4 in year y
$MD_{reg,y}$	=	the methane that would be destroyed in the baseline in tonnes CH ₄ in year y ; for
0.7		this project = 0 (see "determination of $MD_{reg,v}$ ")
GWP_{CH4}	=	The approved Global Warming Potential of methane (21 tCO ₂ /tCH ₄)
EG_{v}	=	The net quantity of electrical energy displaced during the year
CEF _{electriicty,y}	=	CO_2 emissions intensity of the electrical energy displaced in the grid
ET_{y}	=	quantity of thermal energy displaced during the year, which for this project $= 0$
$CEF_{thermal,y}$	=	CO ₂ emissions intensity of the thermal energy displaced, which for this project is
~~		irrelevant since $ET_v = 0$

Determination of MD_{reg,y} $MD_{reg,y} = MD_{project,y} * AF$

Where: AF =Adjustment Factor

In cases where regulatory or contractual requirements do not specify $MD_{reg,y}$ an adjustment Factor (AF) shall be used and justified, taking into account the project context where "reg" stands for "regulatory and contractual requirements". Considering the actual situation on top of the regulatory and contractual requirements, one can observe the following:

1: In the Matuail landfill situation currently no measures are in place to capture or destroy methane produced.

2: In Bangladesh no policies or regulations or contractual requirements what so ever are in place that oblige landfill operators to capture or destroy methane (REF)

Hence the AF factor will be 0% for the first crediting period. In accordance with the Monitoring Methodology the $MD_{reg,y}$ and therefore the AF will be evaluated at the beginning of each crediting period.

Determination of MD_{project,y}

In accordance with ACM001, $MD_{project,y}$ will be determined ex post by metering the actual quantity of methane captured and destroyed once the project activity is operational.

page 26

The methane destroyed by the project activity $(MD_{project,y})$ during a year is determined by monitoring the quantity of methane actually flared and gas used to generate electricity. Within this project there are no intentions to produce thermal energy. The applicable ACM0001-formula therefore will be:

 $MD_{project,y} = MD_{flare,y} + MD_{electricity,y} + 0$

 $MD_{flared,y} = LFG_{flare,y} * W_{CH4,y} * D_{CH4} * FE$

Where:

MD _{flared,y}	=	quantity of methane destroyed by flaring
$LFG_{flare,y}$	=	quantity of landfill gas flared during the year measured in normal cubic meters
W _{CH4,y}	=	average methane fraction of the landfill gas as measured during the year
D_{CH4}	=	density of methane = $7,168*10^{-4}$ tonne/Nm ³
FE	=	Flare Efficiency (the fraction of methane destroyed) (by default: 100%)

 $MD_{electricity,y} = LFG_{electricity,y} * W_{CH4,y} * D_{CH4}$

Where:		
<i>MD</i> _{electricity,y}	=	quantity of methane destroyed by generation of electricity
$LFG_{electricity,y}$	=	the quantity of landfillgas fed into electricity generator
W _{CH4,y}	=	The average methane fraction of the landfill gas is measured during the year and
		expressed as a fraction (m^3/m^3)

Determination ex ante of emissions reductions

In accordance with ACM0001, project proponents provides an ex ante estimate of emissions reductions, by projecting the future GHG emissions of the landfill. To calculate ex ante the GHG-emissions of the landfill a model is used (LFG_{model}).

The methodology used for calculation of the captured and destroyed landfill gas is based on multi-phase modelling. In the multi-phase First Order Decay Model, a number of fractions are distinguished, for which landfill gas generation is described separately (see table E.5). There are distinguished three phases: slow, moderate and fast degradable materials, but other subdivisions are possible, including the introduction of an inert fraction. The advantage of the multi-phase model is that the typical waste composition will be taken into account, since all types of waste contain typical fractions of slow, moderate and fast degradables.

In general, landfill gas formation models are not based on microbiological or biochemical principles, but mainly on a practical description of formation, as observed in laboratory experiments or in full-scale recovery projects.

The amount of landfill gas (LFG_{model}) that is generated is estimated with the following LFG generation model (multi-phase model):

$$LFG_{\text{mod}\,el} = \zeta \sum_{j=1}^{3} 1.87 * A_i * DOC_i * k_{1,i} * e^{-k_{1,i}t}$$

and

 $LFG_{model} * EE_{LFG} = LFG_{flare} + LFG_{electricity}$

page 27

Description of the parameters in this model are given in table E.2

Table E.2: Parameters applied in ex ante calculation for emission reduction (see annex 3 how these are obtained):

Parameter	Descripition	
LFG_{model}	Formation of landfill gas in m3/yr, 8760 hours/year	
1.87	a maximum amount of 1.87 m ³ biogas is produced out of one kilogram	
	degraded organic carbon	
5	formation factor = $MCF * DOC_{f}$	
DOC	amount of (dry) organic carbon for each specific waste stream (kg/ton).	
DOC_{f}	fraction DOC dissimilated to landfill gas. See sub section E.1 from New	
	Baseline Methodology	
MCF	Methane Correction Factor (fraction) see table E.1 from New Baseline	
	Methodology	
Α	amount of waste (ton/year).	
Κ	degradation velocity of each specific waste stream.	
Т	time elapsed since (prevented) depositing in years.	
Ι	Category of waste	
EE_{LFG}	Extraction efficiency = fraction of the generated landfill gas that is exctracted	
	and thus available for combusting or electricity production	

The methane generated in the landfill, extracted and used for energy-production is calculated using the following formula:

 $ME = LFG_{model} * W_{CH4,y} * D_{CH4} * EE_{LFG}$

ME	:	Methane (CH ₄) extracted (tones/yr) and to be combusted and/or used for electricity generation
$LFG_{model,y}$:	is the amount of Landfillgas/y as calculated by the multiphase model in Nm ³ LFG/y (see below)
$W_{CH4,y}$:	average methane fraction of the LFG (in m ³ CH ₄ /m ³ LFG);
D _{CH4}	:	density (tonne/Nm ³) of methane (CH ₄)
EE _{LFG}	:	extraction-efficiency = fraction of the generated amount of landfillgas that is to be extracted

The amounts and composition of the wastes that were and are expected to be landfilled at Matuail, are given in annex 3. Annex 3 also gives the set-points of the parameters used in the model. In doing so, the method is verifiable, in accordance with ACM0001.

The application of the formulas described above in combination with the data given in annex 3 result in emission reductions given in the table below.

Table E.4:	Emission reductions in first crediting period		
	CER's from LFG recovery		
	(and subsequent full combustion) from Matuail landfill		

page 28

Year	Tonnes	
2006	103,503	
2007	206,973	
2008	200,628	
2009	186,000	
2010	175,693	
2011	168,522	
2012	163,624	
Total 2006 – 2012	1,204,943	

B. Calculation of GHG emission reduction associated with renewable electricity delivery to the grid

PE_{elec} Project emissions of electricity production in the grid

The Approved Consolidated Methodology ACM0002: "Consolidated methodology for grid-connected electricity generation from renewable sources", which was approved on 3 September 2004, is applied for determination of the emission factor (EF) of the grid.

Step 1 of ACM0002 is calculation of the Operating Margin emission factor ($EF_{OM,y}$), based on one of the four following methods:

- a. Simple OM, or
- b. Simple adjusted OM, or
- c. Dispatch data Analyses OM, or
- d. Average OM.

The Bangladesh Power Development Board (BPDB) publishes annually about the electricity production in the grid. Relevant copies of the year 2003 (FY (2003-2004) are attached in annex 3.

Due to the fact that reliable information is neither available regarding low-cost/must run resources nor regarding the set of power plants in the top 10% of the grid system dispatch, the methods a, b and c are not usable. Only method d can be applied.

The average OM is calculated as the average emission factor rate of all power plants including low-cost/must run power plants.

The average OM, as the simple OM, can be calculated using either of the two following data vintages:

- a 3-years average, based on the most recent statistics available at the time of PDD submission;
- the year in which project generation occurs, if EF_{OM,y} is updated based on *ex-post*.

Due to non-availability of reliable or complete date of the years 2001 and 2002 the second option is selected to be applicable.

Step 2: Calculate the Build Margin emission factor $(EF_{BM,y})$ as the generation-weighted average emission factor of a sample of power plants. The sample group consists of either:

- the five power plants that have been built most recently, or
- the power plants capacity additions in the electricity system that comprises 20% of the system generation (in MWh) and that have been built most recently.

The sample group that comprises the larger annual generation shall be used.

In line with Step 1, an *ex-post* calculation is proposed.

page 29

Step 3: Calculated the baseline emission factor EF_{v} as the weighted average of the OM emission factor $(EF_{OM,y})$ and the Build Margin factor $(EF_{BM,y})$:

 $EF_v = W_{OM}$. $EF_{OM,v+} W_{BM}$. $EF_{BM,v}$

where the weights w_{OM} and w_{BM} by default are 50%.

For the most recent year (2003) the steps 1 to 3 have been applied, according ACM0002, in the table in annex 3 (table Annex 3.5).

In accordance with ACM0002 leakages (like related to construction activities) are not considered. This results in a baseline emission factor of the electricity park in Bangladesh for the year 2003 of 0.63271 tCO₂/MWh (see table Annex 3.5 in Annex 3, which also contains relevant copies of annual report of BPDB FY 2003-2004).

Hence the electricity delivered to the grid and the emission reduction thus calculated is given in the table below.

Year	Net electricity delivered to grid by combusting extracted methane in gas engine/generators	CER's from LFG recovery (and consequent combusted) from Matuail landfill
	MWh	Tonnes
2006	21,065	13,382
2007	23,502	14,870
2008	23,504	14,871
2009	23,510	14,875
2010	23,513	14,877
2011	23,516	14,879
2012	23,518	14,880
Total 2006 – 2012	162,127	102,580

Table E.5[.] Emission reductions in first crediting period

E.5. Difference between E.4 and E.3 representing the emission reductions of the project activity:

	CER's from LFG recovery (and consequent combusted) from Matuail landfill	CER's (net) related to prevented electricity generation in the grid (elsewhere)	Net total amount of CERs
Year	Tonnes	Tonnes	Tonnes
2006	103,503	13,382	116,831
2007	206,973	14,870	221,843
2008	200,628	14,871	215,499
2009	186,000	14,875	200,874
2010	175,693	14,877	190,571
2011	168,522	14,879	183,401
2012	163,624	14,880	178,501
Total 2006-2012	1,204,943	102,580	1,307,522

T-11. F (

E.6. Table providing values obtained when applying formulae above:

The tables in the appendix 2, summarised in table E-9, presents the calculation of the emission reduction

page 30

(CERs) that will be realised by the landfill-gas extraction project during the sequential crediting periods up to 2026.

Table E.7: Ca	lculated CERs
---------------	---------------

Year	CER's from LFG recovery	CER's (net) related to	Net total amount of CERs
	(and consequent combusted) from	prevented electricity	
	Matuail landfill	generation in the grid	
		(elsewhere)	
	Tonnes	Tonnes	Tonnes
2006	103,503	13,382	116,831
2007	206,973	14,870	221,843
2008	200,628	14,871	215,499
2009	186,000	14,875	200,874
2010	175,693	14,877	190,571
2011	168,522	14,879	183,401
2012	163,624	14,880	178,504
Total 2006-2012	1,204,943	102,580	1,307,522
2013	135,454	14,887	150,341
2014	113,811	14,655	128,466
2015	96,844	9,923	106,767
2016	83,411	9,926	93,338
2017	72,666	9,357	82,023
2018	63,977	8,238	72,215
2019	56,873	7,323	64,197
Total 2013 - 2019	623,037	74,310	697,347
2020	51,001	6,567	57,568
2021	46,092	5,935	52,027
2022	41,944	-10	41,934
2023	38,402	-9	38,392
2024	35,346	-8	35,337
2025	32,684	-8	32,677
2026	30,346	-7	30,339
Total 2020 - 2026	275,815	12,460	288,275
GRAND TOTAL	CERS OVER 2006- 2026: 2,293,144		

page 31

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

The project involves the implementation and operation of a landfill gas extraction system with landfill gas utilisation in gas engines for power production. It does not use any scare resources (like fuel, water); neither it produces any waste or emissions to water and soil. The gas engines do produces local combustion gases. The main environmental negative component can be NOx that is an acidifying gas. The engines however, will comply with US and Western European emission standards; therefore the amount emitted is very limited. It is noted here that elsewhere inefficient and polluting electricity production is prevented. This results overall in a net reduction of combustion gases including NOx.

Extracting the landfill gas has a local environmental impact, mainly reduction of several side effects like odour- and dust emission, fires, etc. All other activities at the landfill site will not change; therefore no negative change in impact will occur.

The compressor(s) and gas engines (3 pcs. of 1.048 MWe each) will be placed in enclosed acoustic housings (sound reducing containers), so no noise pollution will occur.

F.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

Environmental impacts of the project

The project involves the implementation and operation of a landfill gas extraction system with landfill gas utilisation in gas engines for power production. It does not use any scare resources (like fuel, water); neither it produces any waste or emissions to water and soil. The gas engines do produce local combustion gases. the main environmental negative component can be NOx that is an acidifying gas. The engines however, will comply with us and Western European emission standards; therefore the amount emitted is very limited. It is noted here that elsewhere inefficient and polluting electricity production is prevented. This results overall in a net reduction of combustion gases including NOx.

Extracting the landfill gas has a local environmental impact, mainly reduction of several side effects like odour- and dust emission, fires, etc. All other activities at the landfill site will not change; therefore no negative change in impact will occur.

The compressor(s) and gas engines (3 pcs. of 1.048 MWe each) will be placed in enclosed acoustic housings (sound reducing containers), so no noise pollution will occur.

In brief, the project does not have any negative environmental impacts nor in the execution phase nor in the operation phase. The screening and the Initial Environment Examination reveals that no detailed Environmental Impact Assessment is required.

No impacts during the construction phase are expected

UNFCCC

Environmental legislation

The legislation in force are the Environmental Conservation Act 1995 (ECA '95) and the Environmental Conservation Rules 1997 (ECR '97) of the Government of Bangladesh.

The Department of the Environment (DOE) of the Ministry of Environment and Forests (MOEF), headed by the Director General, is the Regulatory Body responsible for enforcing the ECA '95 and ECR '97.

There is a three-tier approach to be followed regarding the Environmental Impact Assessment (EIA).

1. Screening

As per ECR '97, a normative screening procedure is to be followed according to which industries/activities/projects have been divided into four categories viz. Green, Orange A, Orange B and Red;

2. Initial Environment Examination (IEE)

All industries/activities and projects in Orange B and Red categories have to conduct an IEE which helps in understanding the potential extent of environment changes and in finding ways to mitigate by considering the available information, or past experience or standard operating practices. The steps for conducting IEE are:

- collection of baseline information in respect of the project and the environmental setting of the project and its site;
- setting of boundaries of an IEE by identifying the significant issues;
- impact assessment, suggestion of mitigation measures, Environment management plan (EMP) or alternative or other project modifications;
- in the event that the IEE of the project reveals that further investigation is to be carried out then the developer will have to carry out a detailed EIA;

3. Detailed EIA

The detailed EIA should be focused on addressing the issues, which remains unresolved in the IEE. The steps involved in conducting an EIA are as follows:

- a. Baseline studies this is usually divided into two sections:
 - 1: studies related to the project (site selection, mass and energy balances, product storage and transport, list of machinery and equipment emission and ways of treatment etc.);
 - 2: impact identification (list of key sources on environment, detailed impacts, etc);
- b. Evaluation to determine whether mitigation of pollution or the proposed project will be required;
- c. Mitigating measures (changing of site, process, operation, disposal routes etc).

Screening

The screening of the landfill gas extraction and utilisation project reveals that this type of project is not mentioned in one of the lists. Mentioned are however, in the Red list, "gas distribution" and "power generation" two elements of the project. No specification is given about the size or whatsoever.

Initial Environment Examination (IEE)

In the baseline study the project boundaries, the environmental setting of the project and its site are given.

The environmental impact is analysed above. Apart from some local emission of NOx, that is more than compensated elsewhere, the impacts are all positive.

page 33

As mentioned, extracting the landfill gas has a local environmental impact, mainly reduction of several side effects like odour- and dust emission, fires, etc. All other activities at the landfill site will not change; therefore no negative change in impact will occur.

From the screening and the IEE it can be concluded that the proposed landfill gas extraction project with relatively small amount of power generation does not require a detailed EIA.

Stakeholder consultations have not resulted in any negative comment.

Environmental impact assessment

As mentioned before, for landfill gas extraction and utilisation in small-scale gas engines for power production, there is no requirement of a detailed EIA report. This is confirmed by the letter by the Ministry of Environment shown in figure on the next page.

page 34

UNECO

02	2/10/2005 17:28 880-2-9884774	WASTE CONCERN		PAGE 01
		ATTN.	JAN.	EENHOPEN
	Government of the Pe Departme Paribesh Bha Sher-e-Bangi Website	eople's Republic of Ban nt of Environment aban, E/16 Agargaon, a Nagar, Dhaka 1207 www.doe-bd.org	gladesh	
	Ref.: Paribesh/Tech. (Int. Con.)/350/2003/ 2	298	Date:	
	Sub.: Endorsement of two projects (1)	Landfill Gas Extractio	on and Utiliz	ation at Matuail
	Wide Recycling (WWR) BV of the	Netherlands and Wa	ste Concerr	of Bangladesh
	by Designated National Authority	of Bangladesh.	a (aa (101	
		-		
	Ref.: Paribesh/Tech. (Int. Con.)/350/2003/20	632 dated.16/09/2004.		
	In continuation to our memo rofe	*	uther inform	you that the IFF
	Report submitted by you along with	Project Design Docun	nent (PDD) i	has been able to
	meet our requirements to make our	evaluation. We don't re	quire detail	EIA report at this
	stage.			
			2	2
		(M	lohammad F	Reazuddin)
			Director (Te	chnical)
		s - s, *	8	
			Member Se	ecretary
		Na	ational CDM	Committee
	Mr. Maarten (J.M.W.) Van Dijk			
	Managing Director			
	World Wide Recycling B.V.			
	Rijksstratweg 102, 7383 AV Voorat,			
	P.O. Box 90, 7390 AB, Twello,			
	The Netherlands.			

Figure F.1: Letter form the Government of Bangladesh' Department of Environment.

The project is scheduled to start construction beginning 2006 and start operation mid 2006. For the operation of the power generation units a licence will be obtained according the procedures and regulations set in the Private Sector Power Generation Policy of Bangladesh from the Ministry of Energy and Mineral

page 35

Resources.

References

- (1) Environmental Conservation ACT, Government of Bangladesh, 1995
- (2) Environmental Conservation Rules, Government of Bangladesh, 1997
- (3) National Policy for Safe Water & Sanitation. Local Government Division, Ministry of Local Government Rural Development & Co-operatives, Dhaka, 1998
- (4) Private Sector Power Generation Policy of Bangladesh, Ministry of Energy and Mineral Resources, Dhaka, 2000

page 36

SECTION G. Stakeholders' comments

>>

The project is planned at the Matuail landfill site in Dhaka. This is by far the largest landfill (dump) site in Dhaka and is situated some 7 km south from the city centre. In the project area the major stakeholders are:

- a. Local population they comprise of the local people in and around the project area. The role of the local people is as a beneficiary of the project. They will benefit from an improved environmental surrounding. In addition, the local population is also a consumer of electrical power that is supplied from the co-generation units at the end-users site. This is important because this improves the stability of the grid and might result in less power cuts;
- b. Dhaka City Corporation (DCC) (a self government institution) as they are the owner and operator of the landfill site;
- c. Dhaka Electricity Supply Authority (DESA), responsible for distribution of electricity in the greater Dhaka area including the metropolitan city of Dhaka as the buyer of produced electricity. DESA is a main stakeholder in the project. Their willingness to buy against an attractive price will determine the application of gas engines/generator sets for electricity production.

The situation in Bangladesh is in many respects comparable to many other Developing countries. Waste is usually dumped in the street where 'Tokais' (poor people, complete families with children) take out all valuable materials. Collection of waste is locally (municipality) organised, using simple collection systems. Waste from urban areas is transported to a local landfill and dumped without any sanitary measures and little or no control. Dhaka City Corporation is responsible for the waste management in Dhaka City.

It is not expected that landfill gas extraction will be realised at Matuail landfill. The result of this situation is that classic garbage disposal sites will continue to exist resulting in a series of adverse effect to citizens and the environment (waste falling down, incidental fires, smoke, smell burden, uncontrolled gas (methane) release, incidental gas explosions, uncontrolled filtrate, insects/rodents, etc.). Extracting the landfill gas has a local environmental impact, mainly reduction of several side effects like odour- and dust emission, fires, etc.). All other aspects at the landfill site will not be change.

People living around the landfill site will therefore not undergo negative effects of the proposed project.

Since landfill gas extraction projects with relatively small amount of power generation does not require a detailed environment impact assessment (EIA) as have been investigated. Stakeholder consultations have not been completed and documented so far. However, this is proposed to be carried out in parallel with design and engineering of the project.

The entire process of carrying out the local stakeholder consultation has been done in a participatory manner. The project developer used consultative techniques such as the Participatory Rural approach to assess the views and needs of the local stakeholders. The project, during its operation will try to adhere, as far as possible and relevant, to the requirements of the local stakeholders from the project.

The project is scheduled to start operation mid 2006. For the operation of the power generation units a licence will be obtained according the procedures and regulations set in the Private Sector Power Generation Policy of Bangladesh from the Ministry of Energy and Mineral Resources.

G.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

//

Through advertisements (see Appendix 1) stakeholders were invited to come to an information meeting at the BRAC Center in Dhaka on February 12, 2005

45 participants from government offices, academics, non-governmental organizations, media groups, local residents, development partners and private sector were present in the meeting.

A Minutes of Meeting (MoM) was prepared in which all questions, remarks etc. were recorded. Appendix 1 contains the Minutes of Meeting.

G.2.	Summary of the comments received:
>>	

Questions were related to the technology applied, the role of DCC, the CDM procedures etc. No questions were raised on environmental topics.

The stakeholders suggested to form a group or forum who will actively involve to encourage this type investment and for initiation of more this type projects and also to look after on going projects and the progress work in this regard. Overall there was agreement that the proposed project was a beneficial project from sustainability view point.

page 38

Pictures G.1 to G.4: Photo's made during the Stakeholder assessment

page 39

page 40

G.3. Report on how due account was taken of any comments received:

>>

The project proponents will take the suggestion up and will inform the stakeholders regularly on the progress of the projects at Matuail landfill site.

page 41

UNFCO

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	World Wide recycling BV
Street/P.O.Box:	Rijksstraatweg 102
Building:	
City:	7383 AV Voorst
State/Region:	The Netherlands
Postfix/ZIP:	P.O. Box 90, 7390 AB Twello
Country:	The Netherlands
Telephone:	+31 575 509 520
FAX:	+31 575 509 516
E-Mail:	m.vandijk@wwrgroup.com
URL:	
Represented by:	
Title:	Director
Salutation:	Mr
Last Name:	Dijk
Middle Name:	Van
First Name:	Maarten
Department:	
Mobile:	
Direct FAX:	+31 575 509 516
Direct tel:	+31 575 509 520
Personal E-Mail:	m.vandijk@wwrgroup.com

page 42

UNFCC

Organization:	Waste Concern
Street/P.O.Box:	House No. 21 (side B), Road-7, Block-G
Building:	
City:	Banani, Model Town, Dhaka – 1213
State/Region:	Bangladesh
Postfix/ZIP:	
Country:	
Telephone:	+88-02-9873002 / 9884774.
FAX:	+88-02-9564732 / 9884774
E-Mail:	wasteconcern@dhaka.agni.com
URL:	
Represented by:	
Title:	Director
Salutation:	Mr
Last Name:	Enayetullah
Middle Name:	
First Name:	Iftekhar
Department:	
Mobile:	
Direct FAX:	+88-02-9564732/9884774
Direct tel:	+88-02-98884774/608006
Personal E-Mail:	wasteconcern@dhaka.agni.com

Organization:	Government of the People's Republic of Bangladesh	
C	Department of Environment	
Street/P.O.Box:	Paribesh Bhaban, E/16 Agargaon	
Building:		
City:	Sher-e-Bangla Nagar, Dhaka, 1207	
State/Region:	Bangladesh	
Postfix/ZIP:		
Country:		
Telephone:		
FAX:		
E-Mail:		
URL:		
Represented by:		
Title:	Technical Director & Member Secretary national CDM Committee	
Salutation:	Mr	
Last Name:	Reazuddin	
Middle Name:		
First Name:	Mohammed	
Department:	Environment	
Mobile:		
Direct FAX:		
Direct tel:		

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Personal E-Mail:

page 43

Organization:	Ministry of Housing, Spatial Planning and the Environment
Street/P.O.Box:	
Building:	
City:	Den Haag
State/Region:	
Postfix/ZIP:	
Country:	Netherlands
Telephone:	+31 (0)70 339-4721
FAX:	+31 (0)70 339-1306
E-Mail:	
URL:	
Represented by:	
Title:	
Salutation:	Mr
Last Name:	Van Geel
Middle Name:	
First Name:	Pieter
Department:	
Mobile:	
Direct FAX:	
Direct tel:	
Personal E-Mail:	CDM.DNA@minvrom.nl

UNFCCC

UNFCC

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

No public funding is required

page 45

Annex 3

BASELINE INFORMATION

The Matuail landfill was put into operation in 1994. It is the intension of the project developers to reshape the existing landfill in such a way that landfilling is possible up to 2021. In 2003 a daily amount of 1,760 tonnes of waste was landfilled leading to some 635,500 tonnes of waste to be landfilled in 2003. The growth rate (1994 - 2003) of the amount of waste landfilled was about 4.25% per year. For the future it is assumed that a constant amount of 1,760 tonnes per day is collected and transported to Matuail landfill site. From 2006 onwards it is presumed that a part of the offered waste is recycled somehow (160 t/d in 2006, 360 t/d in 2007 and 560 t/d from 2008 onwards). These amounts are diverted from the daily arrival of 1,760 tonnes (conservative approach).

The amounts and composition of wastes were and are expected to be landfilled taking into account above scenario (baseline scenario), are indicated in table Annex 3.2.

The degradation-velocity (k) and the amount of degradable organic carbon (DOC) are indicated per wastecategory in table Annex 3.3.

It is calculated that by the end of 2011 the landfill will be closed (conservative approach).

$$LFG_{\text{mod}\,el} = \zeta \sum_{j=1}^{3} 1.87 * A_i * DOC_i * k_{1,i} * e^{-k_{1,i}}$$

Description of the parameters in this model:

 LFG_{model} : formation of landfill gas (m³/year) (8760 hours/year), 1.87: a maximum amount of 1.87 m³ biogas is produced out of one kilogram degraded organic carbon (1 kg Carbon = 1 kg C = 1000 gr/12 mol C = 83.333 mol C * 22,4 ltr/mol = 1866.67 ltr/kg Carbon).

Parameter	Descripition	Value
ζ	'Formation factor' or 'Gas	Minimum value: 0.5
	Generation Rate' = $MCF * DOC_{f}$	Maximum value: 0.6
DOC	amount of (dry) organic carbon for	See table Annex 3.3.
	each specific waste stream (kg/ton).	
DOC_f	fraction DOC dissimilated to landfill	Minimum value: 0.6
	gas. See sub section E.1 from New	Maximum value: 0.77
	Baseline Methodology	(references: 'revised 1996 IPCC guidelines for
		National Greenhouse Gas Inventories' and
		'IPCC Good Practice Guidance and Uncertainty
		Management in National Greenhouse Gas
		Inventories')
MCF	Methane Correction Factor (fraction)	0.8 (unmanaged site, deeper than 5 meters,
	see table E.1 from New Baseline	classified in accordance with the IPCC 1996
	Methodology	revised guidelines)
Α	amount of waste (ton/year).	See table Annex 3.2 below.
k	degradation velocity of each specific	$k_{j=1} 0.2890 (Fast)$
	waste stream.	$k_{j=2} 0.0840$ (Moderate)
		$k_{i=3} 0.0345$ (Slow)

Table Annex 3.1:Set points for LFG_{model} calculation

page 46

t	time elapsed since (prevented)	Elapsed years of project (maximum: 3 crediting
	depositing in years.	periods).
i	Category of waste	See table Annex 3.2 below.

Table Annex 3.2:	amounts of waste (A) and category of waste (i)
		i una cutegor y or wuste (1)

	Category of waste (i)	Food & Vegetables	Paper products	Garden, tree trimmings, straw	Textile	Inerts (incl. plastics)
Year	Total waste					
	in ton/yr					
1994	429,900	52.7%	9.3%	5.4%	5.0%	27.6%
1995	449,000	52.7%	9.3%	5.4%	5.0%	27.6%
1996	468,900	52.7%	9.3%	5.4%	5.0%	27.6%
1997	489,700	52.7%	9.3%	5.4%	5.0%	27.6%
1998	511,500	52.7%	9.3%	5.4%	5.0%	27.6%
1999	534,200	52.7%	9.3%	5.4%	5.0%	27.6%
2000	557,900	52.7%	9.3%	5.4%	5.0%	27.6%
2001	582,600	52.7%	9.3%	5.4%	5.0%	27.6%
2002	608,500	52.7%	9.3%	5.4%	5.0%	27.6%
2003	635,500	52.7%	9.3%	5.4%	5.0%	27.6%
2004	635,500	52.7%	9.3%	5.4%	5.0%	27.6%
2005	635,500	52.7%	9.3%	5.4%	5.0%	27.6%
2006	577,100	48.9%	10.2%	4.9%	5.5%	30.5%
2007	518,700	44.3%	11.4%	4.3%	6.2%	33.8%
2008	431,100	35.0%	13.7%	3.2%	7.4%	40.7%
onwards						

Table Annex 3.3: degradation velocity and degradable organic content (DOC) per category

	Food & Vegetables	Paper products	Garden, tree trimmings, straw	Textile	Inerts (incl. plastics)
DOC-content	9.5%	26.8%	9.5%	35.1%	0%
Degradation	95% is fast	Moderate	slow	slow	N.A.
velocity	5% is slow				

Table Annex 3.4 shows the setpoints for the parameters used in the formula used for ex ante caculation of emission reduction.

Table Annex 3.4:	set points used for W_{CH4} ,	D_{CH4} and EE_{LFG}
parameter	Applied set point	Reference
W _{CH4}	50%	Revised 1996 IPCC Guidelines for National
		Greenhouse Gas Inventories
D _{CH4}	0.0007168 tonne/Nm3	ACM0001
E _{LFG}	50%	Conservative approach, no default data available, no

... . 1.0

Table Annex 3.5 contains the determination of EF (y = 2003) of the grid in Bangladesh (ref to ACM0002).

locally available figures available.

UNFCCC

 Table Annex 3.5: Calculated emission factor of the grid in most recent year (2003, FY 2003-2004) according ACM0002

FY 2003 -200	4	Power pla	ant data (sou	rce BPDB)												
No. Name of Plan	ıt	Fuel source	Commissioning	Installed capacity	Derated capacity	Type of plant	Heat rate	CO ₂ emissionfactor	Oxidation factor	Emission factor	Electricity generated	Emission	Average	Electricity generated	Emission	Average
			period	[in MW]	[in MW]		[GJ/MWh]	[t CO ₂ /GJ]		[t CO ₂ /MWh]	[MWh]	[t CO ₂ /year]	[t CO ₂ /MWh]	[MWh]	[t CO ₂ /year]	[t CO ₂ /MWh]
1 Karnafuli	2 x 40 + 3 x 50 MW	hydro	1962 - 1988	230	220			0		0	803.113	-				
2 Ashuganj	2 x 64 MW ST	Gas	1970	128	100	Steam turbine	11,64	0,0561	99,5%	0,6530	712.033	462.629				
Ashuganj	3 x 150 MW ST	Gas	1986 - 1988	450	450	Steam turbine	10,36	0,0561	99,5%	0,5813	2.313.792	1.338.284				
Ashuganj	GT1	Gas	1982	56	45	Gas turbine	17,80	0,0561	99,5%	0,9988	80.440	79.939				
Ashuganj	Combined cycle	Gas	1984	34 _			13,39	0,0561	99,5%	0,7510	69.958	52.277				
Ashuganj	GT2	Gas	1986	56 ->	67	Gas turbine	17,82	0,0561	99,5%	0,9997	211.134	210.016				
3 Shanhjibazar	· 7 x GT	Gas	1968 - 1969	96	68	Gas turbine	30,61	0,0561	99,5%	1,7171	123.701	211.346				
Shanhjibazar	70 MW GT	Gas	2000	70	70	Gas turbine	12,77	0,0561	99,5%	0,7165	84.770	60.431		84.770	60.431	
4 Sylhet	1 x 20 MW GT	Gas	1986	20	20	Gas turbine	16,58	0,0561	99,5%	0,9299	49.807	46.083				
5 Fenchuganj	ST/CC	Gas	1994 - 1995	90	90	Gas turbine	11,62	0,0561	99,5%	0,6521	450.050	291.989				
6 Ghorasal	2 x 55 MW ST	Gas	1974 - 1976	110	80	Steam turbine	14,28	0,0561	99,5%	0,8008	211.861	168.820				
Ghorasal	2 x 210 MW ST	Gas	1986 - 1989	420	420	Steam turbine	10,82	0,0561	99,5%	0,6069	1.868.528	1.128.381				
Ghorasal	2 x 210 MW ST	Gas	1994 - 1999	210	210	Steam turbine	10,75	0,0561	99,5%	0,6032	1.699.654	1.020.040		1.699.654	1.020.040	
7 Siddhirghanj	1 x 50 ST	Gas	1970	50	46	Steam turbine	10,63	0,0561	99,5%	0,5963	171.476	101.748				
8 Haripur	2 x 33 MW GT	Gas	1987	99	96	Gas turbine	16,00	0,0561	99,5%	0,8977	446.039	398.403				
9 Chittagong	1 x 60 MW ST	Gas		60	50	Steam turbine	13,46	0,0561	99,5%	0,7552	213.035	160.089				
Chittagong	2 x 28 MW GT	Gas		56	52	Gas turbine	12,05	0,0561	99,5%	0,6758	2.091	1.406				
10 Rauzan	1 x 210 MW ST	Gas	1993	210	180	Steam turbine	10,93	0,0561	99,5%	0,6130	1.050.800	640.955				
Rauzan	1 x 210 MW ST	Gas	1997	210	180	Steam turbine	11,03	0,0561	99,5%	0,6187	739.500	455.223		739.500	455.223	
11 Khulna	1 x 100 MW ST	FO	1984	110	35	Steam turbine	11,52	0,0741	99,0%	0,8535	668.788	565.107				
Khulna	1 x 60 MW ST	FO	1973	60	55	Steam turbine	12,90	0,0741	99,0%	0,9560	49.196	46.559				
Khulna	2 x 28 MW ST	SKO	1980	56	21	Steam turbine	14,33	0,0774	99,0%	1,1091	32.562	35.754				
12 Baghabari	GT	Gas	1991	71	71	Gas turbine	12,74	0,0561	99,5%	0,7146	407.323	289.609				
Baghabari	GT	Gas	2001	100	100	Gas turbine	12,57	0,0561	99,5%	0,7052	642.310	450.677		642.310	450.677	
Bherramara	3 x 20 MW GT	HSD	1976 - 1980	60	54	Gas turbine	15,73	0,0774	99,0%	1,2178	101.455	122.313				
13 Thakurgaon	7 x 1.5 MW Diesel	LDO	1966	4,5	2,5	Diesel engine	9,70	0,0741	99,0%	0,7191	1.666	1.186				
14 Saidpur	3 x 3.75 MW Diesel	LDO		3,75	0	Diesel engine		0,0741	99,0%	0,0000	-	-				
Saidpur	1 x 20 MW GT	HSD	1987	20	18	Gas turbine	15,78	0,0774	99,0%	1,2210	31.033	37.513				
16 Barisal	2 x 20 MW GT	HSD	1984 - 1987	40	36	Gas turbine	16,07	0,0774	99,0%	1,2440	64.601	79.562				
Barisal	9 x Diesel units	HSD	1975 1980	2,6	1,5	Diesel engine	33,62	0,0774	99,0%	2,6022	5.607	14.445				
17 Rangpur	1 x 20 MW GT	HSD	1988	20	18	Gas turbine	16,53	0,0774	99,0%	1,2791	27.574	34.916				
18 Bhola	Diesel unit	HSD	1988	1,5 7-	4	Diesel engine	12,20	0,0774	99,0%	0,9441	2.702	2.525				
Bhola	Diesel unit	FO	1975 - 1980	6		Diesel engine	15,01	0,0741	99,0%	1,1124	2.692	2.965				
	Total (grid)			2312	2045						13.339.291	8.511.191	0,63805	3.166.234	1.986.370	0,62736
													EF _{OM,03}	24%		EF _{BM '03}
														of total power generation	۱	
													EF _{OM,03}	EF _{BM '03}		
												2003 - 2004	0,63805	0,62736		
												Average	0,63271			

Table with baseline data of Electricity Park in Bangladesh (below follow relevant copies from Bangladesh Power Development Board (BPDB) annual report FY 2003-2004):

page 48

UNFCCC

BPDB Net generatio	n				12583.327	MKWh									
Total Net generation	neration				20061 501										
Total Private Net de	neration + Bl	PDB Gr	oss Ger	peration	20820 571	3 "									
i ola i i i i i i ola go		POV	VER P	LANT WIS	E YEARLY SU	MARY S	TATISTICS	(Provision	al)		FY2003-2004			Page No	3
Total generation (S	ystem) :				Energy:		Per Unit Fu	el Cost :	Total Cost :		Fuel Consumption :	Per Unit Fuel	Heat Rate :		Efficiency
												Consumption			(%)
Steam Turbine	(N.C	Gas/FO)			9698.6645	Gwh	0.891	Taka/kwh	8640.2406	Million Taka			2619.396	Kcal/kwh	32
Steam Turbine	1000	(N.Gas)			8980.6803	н.	0.762		6841.7712		97806.859 Million cuft.	10.891 cu.ft/kwh	2607.259		32
Steam Turbine		(F.Oil)	Ê.,		717.9842	*	2.505		1798.4694		208.157 Million lit.	0.290 litre/kwh	2771.202		31
Gas Turbine	(N.Gas/HSI	D/SKO)			2093.7091		1.923		4025.9409				3601.940		23
Gas Turbine		(N.Gas)			1836.4844	et	1.046		1921.3784		27467.154 Million cuft.	14.956 cu.ft/kwh	3580.557		24
Gas Turbine	(HS	D/SKO)			257.2247	н	8.182		2104.5625		107.8546 Million lit.	0.419 litre/kwh	3754.612		22
Gas Turbine		(HSD))		224.6625	н	8.428		1893.4090	н	95.3542 "	0.424 "	3803.039		22
Gas Turbine		(SKO))		32.5622		6.485		211.1535		12.5004 "	0.384 "	3420.487		25
Diesel	(HSD/L	DO/FO)			15.7681		6.068		95.6890	я	7.3374 "	0.465 "	4208.598		20
Diesel		(HSD))		11.4102		6.809		77.6964	•	5.8991 "	0.517 "	4632.475		18
Diesel		(LDO))		1.6659		5.138		8.5599	ж	0.4292 "	0.258 "	2315.847		37
Diesel		(FO)			2.6920		3.504		9.4327		1.0092 "	0.375 "	3583.258		24
Combined Cycl	e	(Gas)			731.1417		0.858		627.2251	•	8966.526 Million cuft.	12.264 cu.ft/kwh	2935.937	н	29
Hydro					803.1133										
											134240.538 Million cuft.				
	Total (Exclu	iding Hy	dro)		12539.2835	н	1.068		13389.10	" (Total)	323.3492 Million lit.		2803.909		30
Total Generation (S	ystem):				Energy:		Per Unit Co	st :	Total Cost :		Fuel Consumption :	Per Unit Fuel	Heat Rate :		Efficiency
												Consumption			(%)
By type of Fuel :															
Gas	=				11548.3064	Gwh	0.813	Taka/kwh	9390.37	Million Taka	134240.538 Million cuft.	11.624 cu.ft/kwh	2782.848	Kcal/kwh	30
FO	=				720.6762	n.	2.509	н	1807.9021		209.166 Million lit.	0.290 litre/kwh	2774.235		31
HSD	1 # 1. C. C. C.				236.0727		8.350	n	1971.1054		101.253 "	0.429 "	3843.129		2
SKO	=				32.5622	"	6.485		211.1535		12.500 "	0.384 "	3420.487		25
LDO	=				1.6659		5.138	н	8.5599	н	0.429 "	0.258 "	2315.847		3
Hydro	=				803.1133										
	Total (Exclu	iding Hy	dro)		12539.2835		1.068		13389.10				2803.909		30
No. 16 Carta	Gas	=	(86.6)	11548.3064	Gwh	0.813	Taka/kwh	9390.3747	Million Taka	134240.54 Million cuft.	11.624 cu.ft/kwh	2782.848	Kcal/kwh	3
	Liquid Fuel	=	(7.4)	990.9770		4.035		3998.7209	н	323.3492 Million lit.	0.326 lit./kwh	3049.334		28
	Hudro	=	i	60 1	803 1133										

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

UNFCCC

CDM – Executive Board

page 49

	POWER PLAN	NT WISE YEA	ARLY SUMMARY	STATIST	ICS (Provis	sional)				FY2003-2004			Page No 1	
SI.	Name of power plant	Type of	Installed Capacity	Generation Derated	Gross Energy	Fuel consumed	Fuel Cost	Station u	ise	Annual Plant	Fuel consumed per unit generation.	Per unit Fuel Cost	Average Heat rate	Efficiency
No.		fuel		Capacity	Generation	(Mill.Cft./	(Million	10202202	% of gross	factor	(cu.ft./kwhr			
-		11.1	(MW)	(MW)	(GWH)	Mill.Litre)	Taka)	(GWH)	Generation	(%)	litre/kwh)	Taka/kwh	Kcal/kwh	(%)
1	Karnatuli Hydro(2x40 MVV+3x50 MVV)	Hydro	230	220	803.1133			2.7298	0.34	39.86				
	Ashuganj 2x64 MW Steam Turbine	Gas	128	100	/12.0331	8262.8578	578.0022	47.3212	6.65	63.50	11.60	0.81	2778	30.96
0	Ashuganj 3x150 MW Steam Turbine	Gas	450	450	2313.7921	23902.1619	1672.0006	166.2137	7.18	58.70	10.33	0.72	2473	34.78
12	Ashuganj GTT	Gas	50	40	60.4440	1427.7030	99.0701	0.2040	0.25	16.40	17.75	1.24	4249	20.24
	Ashuganj Combined Cycle	Gas	54	+cc	09.9080	0754 0040	000 0050	4.6216	1.64	35.65	13.34	0.93	3195	26.92
-	Asnuganj GT 2 *	Gas	00	5 67	211.1337	3751.0910	262.3958	0.2228	0.11	43.04	17.77	1.24	4253	20.22
3	Shahjibazar Gas Turbine(7 units)	Gas	96	68	123.7009	3774.5286	264.0353	1.9788	1.60	14.71	30.51	2.13	7305	11.77
-	Shahjibazar 60 MW Gas Turbine	Gas	/0	70	84.7700	1079.1468	75.4883	0.4258	0.50	13.82	12.73	0.89	3048	28.22
4	Sylhet 1x20 MW Gas Turbine	Gas	20	20	49.8065	823.0144	57.5714	0.1668	0.33	28.43	16.52	1.16	3956	21.74
5	Fenchuganj C.C.	Gas	90	90	450.0500	5215.4347	364.8293	3.9043	0.87	57.08	11.59	0.81	2774	31.00
	Ghorasal 2x55 MW Steam Turbine	Gas	110	80	211.8614	3014.8642	210.8953	28.2730	13.35	21.99	14.23	1.00	3407	25.25
6	Ghorasal 2x210 MW Steam Turbine	Gas	420	420	1868.5284	20155.3102	1409.9013	144.7575	7.75	50.79	10.79	0.75	2582	33.31
	Ghorasal 2x 210 MW S/T (5+6 th Unit)	Gas	210	210	1699.6540	18218.8121	1274.4397	109.2947	6.43	92.39	10.72	0.75	2566	33.52
7	Siddhirganj 1x50 MW Steam Turbine	Gas	50	46	171.4760	1816.8511	127.0921	7.0016	4.08	39.15	10.60	0.74	2537	33.91
8	Haripur 3x33 MW Gas Turbine	Gas	99	96	446.0393	7116.2562	497.7953	1.8503	0.41	51.43	15.95	1.12	3819	22.52
9	Chittagong 1x60 MW Steam Turbine	Gas	60	50	213.0352	2859.1676	200.0041	21.7880	10.23	40.53	13.42	0,94	3213	26.77
	Chittagong 2x28 MW Barge Mounted GT	Gas	.56	52	2.0912	25.1165	1.7569	0.3099	14.82	0.43	12.01	0.84	2875	29.91
10	Rauzan 210 MW S\T (1st)	Gas	210	180	1050.8000	11447.8069	800.7953	81.9071	7.79	57.12	10.89	0.76	2608	32.98
10	Rauzan 210 MW S\T (2nd)	Gas	210	180	739.5000	8129.0269	568.6405	73.8158	9.98	40.20	10.99	0.77	2632	32.68
	Khulna 1x110 MW Steam Turbine	F.oil	110	35	668.7882	192.3102	1645.6706	51.7082	7.73	69.41	0.29	2.46	2749	31.29
11	Khulna 1x60 MW Steam Turbine	F.oil	60	55	49.1960	15.8471	152.7988	3.1139	6,33	9.36	0.32	3.11	3079	27.93
	Khulna 2x28 MW BMPP	SKO	56	21	32,5622	12.5004	211.1535	0.3184	0.98	6.64	0.38	6.48	3420	25.14
12	Baghabari 71 MW Gas Turbine	Gas	71	71	407.3230	5171.8353	361.7795	2.3275	0,57	65.49	12.70	0.89	3040	28.29
	Baghabari 100 MW Gas Turbine	Gas	100	100	642.3095	8049,4727	563.0755	1.6340		73.32	12.53	0.88	3000	28.67
13	Bheramara 3x20 MW Gas Turbine	HSD	60	54	101.4547	42.5218	829.8747	0.4508	0.44	19.30	0.42	8.18	3755	22.90
14	Thakurgaon 7x1.5 MW Diesel	LDO	4.5	2.5	1.6659	0.4292	8.5599	0.1520	9,12	4.23	0.26	5.14	2316	37.14

UNFCCC

CDM – Executive Board

-) -	LAST LOTE (LAISting)	Ter i				*	Dente	C	- (14141)
SL No.	Power Station	Number of Unit(s)	Unit Type	Commissioning date (DD/MM/YY)	Type of Fuel	Installed Capacity (MW)	Derated Capacity (MW)	Generatio Max. Gen. Day	n (MW) or Min. Gen. Da
1	2	3	4	5	6	7	8	9	10
1	KARNAFULI HYDRO	2	Hydro	26-02-1962	Hydro	40	40	38	0
			Hydro	08-01-1962	Hydro	40	40	0	30
		3	Hydro	08-01-1982	Hydro	50	40	0	0
			Hydro	11-01-1988	Hydro	50	50	0	0
			Hydro	11-02-1988	Hydro	50	50	38	35
2	ASHUGANJ	2	ST	17-07-1970	Gas	64	64	64	0
	Performance and a		ST	08-07-1970	Gas	64	64	64	0
	and the second second	3	ST	17-12-1986	Gas	150	150	150	0
	Statement of the second second	1	ST	04-05-1987	Gas	150	150	100	0
	A REAL PROPERTY.	P. Contract	ST	21-03-1988	Gas	150	150	110	110
		1	CTICC	15-11-1982	Gas	56	40	0	
	and the second second	1	STS	28-03-1984	Gas	34	20	0	0
		1	CT CC	23-03-1986	Gas	56	40	35	40
3	SIDDHIRGANJ	1	ST	29-04-1970	Gas	50	30	30	32
4	HARIPUR	3	СТ	31-10-1987	Gas	33	32		
			СТ	15-11-1987	Gas	33	32	31	31
			СТ	02-12-1987	Gas	33	32	30	30
5	GHORASAL	2	ST	16-06-1974	Gas	55	40	0	
			ST	13-02-1976	Gas	55	40	0	
		4	ST	14-09-1986	Gas	210	200	100	100
			ST	18-03-1989	Gas	210	210	170	170
			ST	15-09-1994	Gas	210	210	190	170
	1	100	ST	31-01-1999	Gas	210	210	170	170
6	SHAHJIBAZAR	7	СТ	1968-69	Gas	96	68	32	32
		2	СТ	28-03-2000	Gas	35	35	33	32
	Same Added		ст	25-10-2000	Gas	35	35	0	0
7	FENCHUGANJ CC	1	CT)	24-12-1994	Gas	30	30	30	26
		1	CT CC	31-01-1995	Gas	30	30	30	29
		1	ST	08-06-1995	Gas	30	30	30	0
8	SYLHET	1	CT	13-12-1986	Gas	20	20	20	20
9	RAOZAN	2	ST	28.03.1993	Gas	210	180	180	180
-			ST	21.09.1997	Gas	210	180	190	200
10	SIKALBAHA	1	ST	24-04-1984	Gas	60	50	48	0
-		2	CT	13-10-1986	Gas	28		0	0
	The second second		CT	23-10-1986	Gas	28		0	0
riva	te								
1	NEPC Haripur BMPP)	8	D	30-06-1999	Gas	110	110	95	110
2	RPC (Mymenshing)	4	CT	20/11/99, Jan 00	Gas	140	140	108	141
			CT	Oct. 00,Dec.00	Gas				
3	CDC, Haripur	1	CT 1 CC	23-05-2001	Gas	360	360	350	347
		1	ST	01-12-2001					
4	CDC, Meghnaghat	2	CT CC	26-11-2002	Gas	450	450	420	330
		1 1						and the second	

I his template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

UNFCCC

CDM – Executive Board

		Number	Unit	Commissioning	Type of	Installed	Derated	Generatio	n (MW) on
SL No	Power Station	of Unit(s)	Туре	date (DD/MM/YY)	Fuel	Capacity (MW)	Capacity (MW)	Max. Gen. Day	Min. Gen. Day
1	2	3	4	5	6	7	8	9	10
1	KHULNA	1	ST	25-05-1973	F.Oil	60	55	48	0
		1	ST	07-07-1984	F.Oil	110	95	85	92
		2	СТ	07-06-1980	SKO	28	21	16	16
			СТ	03-06-1980	SKO	28	21	16	16
2	BHERAMARA	3	СТ	28-07-1976	HSD	20	20	0	19
			СТ	27-04-1976	HSD	20	20	18	19
			СТ	19-01-1980	HSD	20	20	18	19
3	SAIDPUR	1	ст	17-09-1987	HSD	20	20	19	20
4	THAKURGAON	3	D	06-06-1966	LDO	4.5	4	4	2.8
5	BARISAL	2	D	1975-1980	HSD	5.85	3.2	3	2.5
	Section 10 Suggest	2	СТ	05-08-1984	HSD	20	18	16	16
			СТ	04-10-1987	HSD	20	18	15	15
6	RANGPUR	1	СТ	16-08-1988	HSD	20	20	18	18
7	BHOLA	2	D	08-10-1988	F.Oil/HSD	6	2.5	2	1.5
		3	D	1975-1980	HSD	1.50	1.2	1	1 .
8	BAGHABARI	1	СТ	04-06-1991	Gas	71	71	70	70
		1	СТ	25-11-2001	Gas	100	100	102	0

Private

-	TOTAL(A+B);					4680	4362	3536	2892.3
	SUB TOTAL(B) :					755	710	650	527.3
2	BAGHABARI BMPP	2	СТ	26-06-1999	Gas	90	90	87	87
1	KPCL BMPP	18	D	12-10-1998	F.Oil	110	110	113	113

This template shall not be altered. It shall be completed without moullying/adding headings of logo, ionnal of iont.

CDM – Executive Board

125.30						Installed	Derated	Generation	n (MW) on
						Capacity (MW)	Capacity (MW)	Max. Gen. Day	Min. Gen. Day
1	2	3	4	5	6	7	8	9	10
	Hydro	2010			a stage of t	230	220	76	65
East	ST (Steam Turbine)					2058	1928	1566	1132
Zone	CC (Combined Cycle)					180	150	90	55
Total	CT (Combustion Turbi	ne)				397	294	181	185
	D (Diesel)					0	0	0	0
P	Private					1060	1060	973	928
	ALL					3925	3652	2886	2365
West	ST (Steam Turbine)	172				170	150	133	92
Zone	CT (Combustion Turbi	ne)				367	349	308	228
Total	D (Diesel)					18	11	10	8
P	Private					200	200	200	200
	ALL					755	710	650	527.3
	Hydro	1.00				230	220	76	65
System	ST (Steam Turbine)					2228	2078	1699	1224
Total	CC (Combined Cycle)					180	150	90	55
	CT (Combustion Turbi	ne)				764	643	488	413 [,]
	D (Diesel)					18	11	10	8
P	Private					1260	1260	1173	1128
	ALL					4680	4362	3536	2892.3

Notes :

System Maximum Generation was on 14-06-2004 during peak hours at 19:30 hrs. System Minimum Generation was on 03-06-2004 during peak hours at 20:00 hrs.

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 53

UNFCC

Relevant copies from used multi-phase model (see paragraph E.4)

page 54

UNFCCO

		2.2.2
		ROYAL HASKONING
GENERAL INFORMATION		
General information		
Filename:	nate version 17 July 20	103. undate February 2005
LFG estimates based on: Informatio	n from DCC / reshapir	ng landfill
Projectnumber: 9R1533/R	loyal Haskoning/H. Óo	sterdijk
Municipality: Dhaka		
Name of landfill: Matuail, D	haka, Bangladesh	
Compsition of waste	Noto	Input bacad on fraction present in the different types of wests
Industrial waste:	NULE.	Source: "Refuse quality assessment of DCC for
Inerts:	+	waste to electrical energy project". July 1998
	%	IPCC deafualt values used
Typical dates		
Start year landfilling	1994	
Start year LFG extraction	2006 July	
Gas generation rate	50.007	NOTE: The supreme of 550% has been used in the calculations
Minimum Ma∽imum	60.0%	NOTE. The average of 55% has been used in the calculations
Maximann	00,070	
Gas properties		30 1
Methane concentration	50%	(by default, conservative approach)
Energy content in kW/m3	4,98 kW/m3 L	FG
Energy content in MJ/m3	17,94 MJ/m3 L	FG
CO2 eq. Avoided CO2	0,63271 ton CO2/	MVVh generated in Electricity Park Bangladesh (2003)
CO2 eq. Emission reduction	7.533 g/m3 LF	2
Engine properties		
Amount of gas engines	3 pcs.	
Efficiency gas engine	36%	
Efficiency extraction installation	80%	
Cap. extraction installation	3.000 m3/hr.	
Cap. per gas engine	1.048 kVVe	Jenbacher JGS 320 GS-LL
Gas rate per gas engine	584 m3/m.	
Annual operational hours		
Extraction installation	8.760 hr/vr.	
Gas engine	7.500 hr/yr.	
Maximum gas production		
Hast degradable	2,0 years	
Average degradable Slow degradable	15.0 years	
	io,o years	
Minimum gas production		
Fast degradable	3,0 years	
Average degradable	10,0 years	
Slow degradable	30,0 years	

page 55

RECO Filenarr LFG es	/ERY R ne: timates	ATES	LFG Estimate version 17 July 2003, update February 2005 Information from DCC / reshaping landfill	ROYAL HASKONING
Projecti	number olity:	•	9R1533/Royal Haskoning/H. Oosterdijk Dhaka	
Name c	of landfil	l:	Matuail. Dhaka. Bandladesh	
Period Veer	1994	2006		
1994	2005	<u>2021</u> 50%		
1995	50%	50%		
1996	50%	50%		
1997	50%	50%		
1998	50%	50%		
1999	50%	50%		
2000	50%	50% 50%		
2001	50%	50% 50%		
2002	50%	50%		
2004	50%	50%		
2005	50%	50%		
2006	50%	50%	Dogo 1	
2007	50%	50%	Fauel	
2008	50%	50% 50%		
2003	50%	50%	-	
2011	50%	50%		
2012	50%	50%		
2013	50%	50%		
2014	50%	50%		
2015	50%	5U% 50%		
2010 2017	50%	00% 50%		
2018	50%	50%		
2019	50%	50%		
2020	50%	50%		
2021	50%	50%		
2022	50%	50%		
2023	50%	50% 50%		
2024 2025	50%	50%		
2026	50%	50%		
2027	50%	50%		
2028	50%	50%		
2029	50%	50%		
2030	50%	50%		
2031	50%	5U% 50%		
2032	50%	50%		
2034	50%	50%		
2035	50%	50%		
2036	50%	50%		
2037	50%	50%		

UNFCCO

UNFCCC

page 56

Projectnu	mber:			9R	1533/Royal Has	skoning/H. Oos	terdijk							584 r	nax flow to 1 g	as enigine						
Name of I	andfill:			Mat	tuail, Dhaka, Ba	angladesh								7	.500 hr/yr avai	lability per engin	e					
Year	LF	G Generation		LFG	Recoverable		Energy con	tent of recovere	d LFG	Electricity consu	imption of comp	pressor(s)	Max. no. of gas engines	Gas flow to gas	Energy to gas (Electricity generation by gas engine	Electricity consumption compresso(s)	Net electricity generation	CO2 equivalents of extracted LFG	Net avoided CO2 equivalents of electricity generation by pas engines	Total CO2 equivalents reduction	Gas to flare
	Nm3/hr min	Nm3/hr max	Nm3/hr average	Nm3/hr min	Nm3/hr max	Nm3/hr average	MVVh/yr min	MVVh/yr max	MWh/yr average	MVVh/yr min	MWh/yr max	MVVh/yr average	Based on average flow	Nm3/hr average	MVVh/yr average	MWh/yr average	MWh/yr average	MVVh/yr T average	onnes CO2/yr average	Tonnes CO2/yr1 average	onnes CO2/y average	flow Nm3/hr
1994	-		-					-			-				-						-	-
1995	777	1.270	1.023	-	-	-	-	-			-	1.1	-		-	-			-		-	-
1996	1.443	2.264	1.853	-	-	-	-	-			-	1.1	-		-	-		-	-		-	-
1997	2.022	3.065	2.543	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
1998	2.535	3.730	3.132	-	-		-	-	-	-	-	1.1	-	-	-	-	-	-	-	-	-	-
1999	2.885	4.301	3.048		-	-	-	-			-		-		-				-		-	-
2000	3,417	4.808	4,112		-	-		-	-		-		-	-	-	-	-		-		-	-
2001	4 180	5.272	4.540	-	-		-	-	-	-	-			-	-	-	-	-	-	-	-	-
2002	4 537	6 128	5 332		-		-	-														
2004	4.884	6.539	5 712					-			-		-								-	-
2005	5.174	6.865	8 020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2006	5.420	7.128	8.274	1.355	1.782	1.568	59.148	77.792	68.470	34	45	39	3	1.568	58.622	21.104	39	21.065	103.503	13.328	116.831	-
2007	5.465	7.081	6 273	2.733	3.540	3.136	119.291	154.547	136,919	68	89	78	3	1.753	65.500	23.580	78	23.502	206.973	14.870	221.843	1.384
2008	5.351	6.810	6.081	2.676	3.405	3.040	116.798	148.644	132,721	67	85	76	3	1.753	65.500	23.580	76	23.504	200.628	14.871	215,499	1.288
2009	5.027	6.247	5.637	2.514	3.124	2.819	109.734	136.355	123.044	63	78	70	3	1.753	65.500	23.580	70	23.510	186.000	14.875	200.874	1.066
2010	4.781	5.869	5.325	2.391	2.934	2.662	104.357	128.095	116.226	60	73	67	3	1.753	65.500	23.580	67	23.513	175.693	14.877	190.571	910
2011	4.596	5.619	5.108	2.298	2.810	2.554	100.310	122.655	111,482	57	70	64	3	1.753	65.500	23.580	64	23.516	168.522	14.879	183.401	801
2012	4.458	5.460	4.959	2.229	2.730	2.480	97.305	119.178	108.242	56	68	62	3	1.753	65.500	23.580	62	23.518	163.624	14.990	178.504	727
2013	3.673	4.537	4.105	1.837	2.269	2.053	80.178	99.036	89.607	46	57	51	3	1.753	65.500	23.580	51	23.529	135.454	14.887	150.341	300
2014	3.021	3.878	3.449	1.510	1.939	1.725	65.933	84.646	75.289	38	48	43	3	1.725	64.460	23.206	43	23.163	113.811	14.655	128.466	-
2015	2.529	3.341	2.935	1.265	1.671	1.468	55.204	72.927	64.065	32	42	37	2	1.168	43.667	15.720	37	15.683	96.844	9.923	106.767	299
2016	2.154	2.902	2.528	1.077	1.451	1.264	47.013	63.345	55.179	27	36	32	2	1.168	43.667	15.720	32	15.688	83.411	9.926	93.338	96
2017	1.863	2.542	2.202	932	1.271	1.101	40.665	55.478	48.071	23	32	28	2	1.101	41.158	14.816	28	14.789	72.666	9.357	82.023	-
2018	1.634	2.244	1.939	817	1.122	970	35.664	48.981	42.323	20	28	24	2	970	36.235	13.045	24	13.020	63.977	8.238	72.215	-
2019	1.450	1.997	1.724	725	999	862	31.654	43.592	37.623	18	25	22	2	862	32.212	11.596	22	11.575	56.873	7.323	64.197	-
2020	1.300	1.791	1.546	650	896	773	28.383	39.094	33,739	16	22	19	2	773	28.886	10.399	19	10.380	51.001	6.567	57.568	-
2021	1.176	1.618	1.397	588	809	698	25.667	35.316	30.491	15	20	17	2	698	26.106	9.398	17	9.381	46.092	5.935	52.027	-

Next page: Detailed flow of landfill gas, electricity production/consumption, CO2 reductions etc.

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 02

page 57

UNFCCC

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 58

Annex 4

MONITORING PLAN

The project developers and operators (SPC formed by World Wide Recycling and Waste Concern) will oversee the development of the project and will periodically carry out internal audits, when required with external assistance, to assure that project activities are in compliance with monitoring and operational requirements.

The SPC formed by WWR/WC will adopt the instructions given in the MP and accomplish all activities related to the implementation of the procedures given in the Operational Manual. The main responsibilities of the operator are related to:

- *Data handling*: maintaining an adequate system for collecting, recording and storing data according to the protocols determined in the Monitoring Plan, checking data quality, collection and record keeping procedures regularly;
- *Reporting*: preparing periodic reports that include emission reductions generated, observations regarding Monitoring plan procedures;
- *Training:* assuring personnel training regarding the performance of the project activities and the Monitoring plan;
- *Quality control and quality assurance*: complying with quality control and quality assurance procedures to facilitate periodical audits and verification.

An Operational Manual to be produced by the developer of the project will include procedures for training, capacity building, proper handling and maintenance of equipment, emergency plans, and work conditions and security.

The Monitoring plan and Operational Manual will be validated by the DOE.

Quality control and quality assurance procedures

Regarding quality control and assurance procedures to be undertaken for the monitored data, the practices to be implemented in the context of the Matuail landfill gas project are as follows:

Monitoring

The approved consolidated monitoring methodology ACM0001 "Consolidated monitoring methodology for landfill gas project activities" will be applied as is worked out in section D.2.

Monitoring records:

Daily readings of all field meters will be registered in either electronic form or on paper worksheets. Data collected will be entered in electronic worksheets and stored. Periodic controls of the field monitoring records will be carried out to check any deviation from the estimated CERs and according the Operational Manual for correction or future references.

Recommendations on system and procedures improvements will be presented. Periodic reports to evaluate performance and assist with performance management will be elaborated.

Equipment calibration and maintenance:

All meters and other sensors will be subject to regular maintenance and testing regime according to the technical specifications from the manufacturers to ensure accuracy and good performance.

UNFCC

Calibration of equipment will be performed periodically according to technical specifications and in agreement with recommendations given by suppliers and/or institutes.

Corrective actions:

Actions to handle and correct deviations from the Monitoring Plan and Operational Manual procedures will be implemented as these deviations are observed either by the operator or during internal audits. If necessary, technical meetings between the operator, the developer and the sponsor of the project will be held in order to define the corrective actions to be undertaken.

Site audits:

The authorities will make regular site audits to ensure that monitoring and operational procedures are being observed in accordance with the Monitoring Plan and the Operational Manual.

Training:

The operator personnel will be trained in equipment operation, data recording, reports writing, and operation, maintenance and emergency procedures in compliance with the Operational Manual.

- - - - -

page 60

UNFCC

Appendix 1

Minutes of Meeting Stakeholders Assessment

STAKEHOLDERS' MEETING ON

LANDFILL GAS RECOVERY AND UTILIZATION AT MATUAIL, DHAKA AND COMPOSTING OF ORGANIC WASTE IN DHAKA

Local stakeholders' consultation meeting to discuss stakeholder concerns on proposed Clean Development Mechanism (CDM) projects -1) Landfill Gas Recovery and 2) Utilization at Matuail, Dhaka of capacity 3-6 MW electricity production and Composting of Organic Waste in Dhaka of capacity 700 tons / day.

Date and Venue: 12.02.2005, 10.00 AM at BRAC Center, Mohakhali, Dhaka, Bangladesh.

Dr. Mujibur Rahman, Professor, Environmental Engineering Division, Bangladesh University of Engineering and Technology (BUET) and Director International Training Network (ITN) chaired the meeting introducing himself and requested all the participants to introduce themselves accordingly. 45 participants from government offices, academics, non-governmental organizations, media groups, local residents, development partners and private sector were present in the meeting After that Dr. Mujibur Rahman conducted the meeting as Chairman. Then he requested the project proponents to give a brief description of the project.

Mr. Maqsood Sinha, Executive Director of Waste Concern (WC), in his presentation focused on aim of this project, the roles of two project proponents Waste Concern and World Wide recycling, Kyoto Protocol – Clean Development Mechanism (CDM), waste generation and management situation in Dhaka city and impact of this project. He also mentioned about the CDM project approval process in Bangladesh and informed that the aforesaid projects.

Mr. Maarten Van Dijk, Managing Director, World Wide Recycling (WWR), Netherlands, represented Word Wide Recycling in this stakeholders meeting and shared his project and experiences which will be replicated at Matuail, Dhaka after some modification. He explained the technology they use in their project for recycling and reuse of their wastes and also explained the scope of applying this technology in Bangladesh.

Mr. Iftekhar Enayetullah, Director, Waste Concern (WC), in his presentation focused on waste generation scenario of Dhaka City Corporation (DCC) Area, waste quality and its prospect for composting and bio-gas generation and also the scope of the project. He also gave a brief description of different units of the proposed CDM projects, project cost and financial viability, global and local benefits and finally the current status of both of the projects.

Dr. Mujibur Rahman, conducted the open discussion where the stakeholders raise questions, express their concerns and comments. Mr. Sinha, Mr. Iftekhar, Mr. Maarten and Dr. Ijaz answered the queries of the participants. Specific concerns and questions and the answers are delineated in the table below.

Stakeholder Concern / question / comment	Answer / outcome
How will the technology of the pilot project	The pilot project in Netherlands is developed for
developed in Netherlands be adopted in different	segregation of mixed wastes (both organic and inorganic),
climatic condition of Bangladesh? [Mr. Shahjahan,	since Bangladesh doesn't has any source separate
BEMP, DoE, GoB]	collection system. However, the waste management and
	treatment technology used in Netherlands will be
	implemented in Bangladesh with some modifications,

UNFCCO

CDM – Executive Board

page 62

	making it suitable for the local circumstances.
Is there any plan for management of the remaining	Presently DCC collects 1200 tons of waste/ day out of
wastes, not collected by DCC? [Dr. Engr. Khurshed-	total generated waste 3200 tons / day. The project will
ul-islam UNDP, SEU]	manage only the wastes collected by DCC. However, the
	savings made by the project for DCC can help them to
	improve their collection efficiency.
How will the project manage the excess wastes, if	With the current collection efficiency (1200 tons / day) the
the collection efficiency of DCC increases? [Md.	project will sustain up to 2020. If the collection efficiency
Anisul Kabir Research Officer IPSU]	increases the wastes can be managed up to a certain time
	limit, but the lifetime of the land fill site will be reduced.
How long it will take to implement the project?	After completion of all types of official formalities, it will
	take only six (6) months to bring the project in full
	operation.
How will this project work to reduce the amount of	Source segregation of wastes will help to achieve the
landfill disposals from 35 % to 20%? [Taslima	target of landfill wastes reduction from 35% to 20%.
Islam, Senior Staff Lawyer, BELA]	
Does any developing country practice the technology	Yes. For example, in Lakhnow India there is a similar type
used in this project? [Taslima Islam, Senior Staff	project.
Lawyer, BELA]	
Who is the owner of this project? And how will the	The land for this project belongs to DCC and WC and
income from the project are distributed?	WWR works in partnership, where WWR is the investor
[Shafiul Azam Ahmed, World Bank)	and technology provider. Both WWR and DCC will be
	benefited from this project. A percent of royalty will go to
	DCC and DCC has no fixed cost anymore.
What is the Carbon Trading Concept and How does	It's the concept of financing a developing country to
it work? [Dr. Abdus Satta Syed, ACE Data Products	reduce GHG emission by any developed country, which
]	will give them the credit of reducing GHG emission for
	their country.
Are these two projects bundled or separate projects?	These projects are separate CDM projects and not
Mr. Mozaharul Alam, MOEF]	bundled.
What is the status of validation process of the project	
technologies? [Mr. Mozaharul Alam, MOEF]]	
Is there any scope for other projects like poultry litter	A research is being carried out to include the poultry litter
treatment and composting to be included in CDM	treatment and composting under CDM projects.
project? [Gias Uddin Ahmed, Chairman	
Center for Agro Technology Division]	

RECOMMENDATIONS OF STAKEHOLDERS' MEETING

The stakeholders thanked WWR and WC for initiating the first CDM project in Bangladesh and suggested to replicate this idea all over the country in different types of projects. Participants insisted to install the same type projects in the dumping sites of other city corporations also on the basis of response from the government authorities.

They also expressed their concern about the immediate implementation of the project with the active participation of all the concerned authorities. The stakeholders suggested to form a group or forum who will actively involve to encourage this type investment and for initiation of more this type projects and also to look after on going projects and the progress work in this regard.

UNFCCO

page 63

Overall there was agreement that the proposed project was a beneficial project from sustainability view point.

Dr. Mujibur Rahman, concluded the meeting with a short speech mentioning the importance of immediate implementation of the project for the country's interest. And he also emphasized the role of media to highlight the importance of this type of project and to increase public awareness and involvement.

	Name & Designation	Telephone	Fax	Email
1	Mr. Md. Obaidur Rahman	8952342 8921351	8952342	
	Managing Director			
	MAP Agro Industries			
	House-40, Road-18, Sector-14			
	Uttara Model Town Dhaka			
2	Krishibid MD. Rafigul Islam	9847967	8315335	
-	R&D Manager	0171-539008		
	Alpha Agro Limited			
	Jatiya Scout Bhaban (11 th Floor)			
	70/1 Purana Paltan Line, Kakrail			
	Dhaka 1000			
3	Dr. Mujibur Rahman			
	Professor, Civil Engg.			
	ITN-Bangladesh			
	Civil Engineering Building(3rd Floor)			
	Bangladesh University of Engineering &			
	Dhaka 1000			
4	Dr Jiaz Hossain	9665609		
· ·	Professor & Head	8617523		
	Department of Chemical Engineering	8110189 (R)		
	BUET	011052028		
	Dhaka-1000			
5	Engr. Anjan Shaha			
	Manager Engineering			
6	Business Resources Ltd.			
0	Matuail High School			
	Demra, Konapara			
	Matuail, Dhaka			
7	Saju			
	Momen Sai			
	Demra, Matuail			
	Dhaka			

LIST OF PARTICIPANTS STAKEHOLDERS MEETING FEB. 12, 2005

page 64

UNFCCO

8	Ms. Rina			
	Momen Sai			
	Demra, Matuail			
	Dhaka			
9	Ms. Helena Akter			
	Rose Bird Kindergarten			
	Demra, Matuail			
	Dhaka			
10	Mr. Harun-ur-Rashid			
	Rose Bird Kindergarten			
	Demra, Matuail			
	Dhaka			
11	Mr. A.H.Md. Maqsood Sinha	9884774		
	Executive Director	9873002		
	WASTE CONCERN			
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
12	Mr. Iftekhar Enayetullah	9884774		
	Director	9873002		
	WASTE CONCERN			
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
13	Mr. Maarten Van Dijk			
	Managing Director			
	World Wide Recycling			
	Netherlands			
14	Mr. Shah Monirul Kabir	9884774		
	Research Officer	9873002		
	WASTE CONCERN			
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
15	Ms. Laila Arjuman Banu	9884774		
	WASTE CONCERN	9873002		
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
16	Ms. Syeda Shaila Akter Khan	9884774		
	WASTE CONCERN	9873002		
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
17	Mr. Abdur Razzak	9884774		
	WASTE CONCERN	9873002		
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
18	Mr. Wasim Kha	9884774		
	WASTE CONCERN	9873002		
	House 21(Side B), Road-7			
	Block-G, Banani, Dhaka-1213			
19	Dr. M S Islam	0176585137		
	Exicitive Director			
	BARI			
20	Mr. Suranjit Debnath	8124944-6	8125155	
	Reporter			

UNFCCO

CDM – Executive Board

page 65

	The Daily Star			
	19 Kawranbazar			
	Dhaka			
21	Mr. Shafiul Azam Ahmed	8159015	8159029	
	Water & Sanitation Specialist	extn4148		
	Water & Sanitation Program			
	The World Bank			
	Flat 03-04, Building-A, Priyo Prangan			
	2, Paribag			
	Dhaka			
22	Mr. Murad Husain	9113696	8115305	
	Manager -COO Affairs	0171-606707		
	Rahimafrooz Batteries Ltd.			
	705, West Nakhalpara			
	Tejgaon, Dhaka.			
23	Mr. Mozaharul Alam	8851237	8851417	
	Research Fellow	8851986		
	BCAS	9113682		
	House - 10, Road - 16/A			
	Gulshan - 1 , Dhaka – 1212			
24	Taslima Islam			
	Senior Staff Lawyer			
	BELA			
	House 15A, Road 3			
	Dhanmondi, Dhaka			
25	Novera Hossain	8610332	8622320	shamannay@sdnbd.
	Unnayan Samannay	8622320		org
	2/F/1 Mymensingh Road, Shahbagh			
	Dhaka			
26	Begum Ummay Hasan			
	Deputy Drector Technical			
	Department of Environment			
	E-16, Agargaon			
	Dhaka – 1207	0400050477		
27	Md. Shahjahan	0189258177		
	LPC,BEMP			
	Department of Environment			
20	Dhaka = 1207	0474040054		
28	MD. Shan Alam	0171840354		
	National Consultant on Energy, UNDP, SEU			
	UNDP IDD Dhahan			
	IDB Bhaban E/9 A Degum Believe Shereni			
	E/o-A, Beguin Kokeya Sharani Shar a Dangla Nagar			
	Dhaka			
20	Diaka Dr. Engr. Khurshod ul Islom			
29	Dr. Eligr. Knursheu-ul-Islam National Consultant on Energy LINDD SELL			
	House 42/A Road 116			
	House 43/A, Noau 110, Gulshan Dhaka 1212			
20	UUISIIAII. DIIAKA-1212		1	
40	Dr. Zainal Abadin			
30	Dr. Zainal Abedin Minstry of Agriculture			
30	Dr. Zainal Abedin Minstry of Agriculture			

page 66

UNFCCO

31	Gias Uddin Ahmed		
	Chairman		
	Center for Agro Technology Division		
32	Md. Anisul Kabir		
	Research Officer		
	IPSU		
33	Anisur rahman		
	BSS		
34	Zakir Hossain		
	Asst Engineer		
	MSP		
	LGED, Dhaka		
35	Yasmin Akhter		
	BILIA		
	Dhanmondi, Dhaka		
36	Dr. Abdus Satta Syed		
	Proprietor		
	ACE Data Products		
	BIRS Bhaban		
	Karwan Bazar		
27	Dhaka Mahasimul Kasim		
51	Staff Correspondent PD News 24		
	10 Johangir tower		
	th Eleor Kerwen Pezer		
	0 Flool, Kalwali Dazal		
28	S K Amzad Hassain	8110/37	
50	S K Allizau Hossaili Project Director	0119437	
	I GED Dhaka		
39	Latiful Alam Khan	0176193246	
2,	Managing Director	00.2.0	
	Center for Environment Studies		
	HEDA. Bangladesh		
40	Masum Ahmed	0172981906	
	Bangladesh Betar (Radio Bangladesh)		
	e v e ,		
	Dhaka		
41	Dhaka Abul Kalam Azad		
41	Dhaka Abul Kalam Azad S B, Dhaka		
41	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu		
41 42	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter		
41 42	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub		
41 42	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka		
41 42 43	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal		
41 42 43	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer)		
41 42 43	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A		
41 42 43	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A		
41 42 43	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A Dhaka		
41 42 43 44	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A Dhaka Fiaz Ullah Bhueyan		
41 42 43 44	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A Dhaka Fiaz Ullah Bhueyan Daily Naya Diganto		
41 42 43 44	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A Dhaka Fiaz Ullah Bhueyan Daily Naya Diganto Dhaka		
41 42 43 44 45	Dhaka Abul Kalam Azad S B, Dhaka Salahudin Bablu Senior Reporter Daily Inqilub Dhaka Md Shariful Alam Mondal (Environment Monitoring Officer) Dhanmondi r/A House 49, Road R/A Dhaka Fiaz Ullah Bhueyan Daily Naya Diganto Dhaka Shafiul Goni Numan		

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 67

UNFCCC

Figure Appendix 1.1: Advertisement for invitation to participate in the Stakeholders Assessment

THE BANGLADESH OBSERVER

page 68

UNFCC

Appendix 2

Letter of Approval

R Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	tef.: Paribesh/Te ub.: Endorsem Site in Dha (WWR) B National A ne undersigned i angladesh forme dorsed the abov The proponen Bangladesh wi validator accre The proponent Dhaka City Con The proponents Dhaka City Cor National CDM (The proponents	Government of t Depa Paribes Sher-e-I ech. (Int. Con.)/350/20 nent of two projects (1 naka" and (2) Composi V of the Netherland Authority of Banglades is pleased to convey red under United Na ve mentioned projects W vill make necessary a edited to the CDM Exe ths of the projects will ported to the CDM Exe the of the projects will with DCC and taking p is of the projects would ported to the projects would with DCC and taking p	the People's Reput artment of Environ sh Bhaban, E/16 Ag Bangla Nagar, Dha 003/2632. I) Landfill Gas Extra ting of Organic Wa ds and Waste Co sh. I that the two tier D ations Framework s subject to the folk WWR BV of the H arrangement for an ecutive Board of the arrangement for an ecutive Board of the arrangement for an ecutive Board of the ill sign a memora re implementing the make the projects possession of the ei d be the implement e controlling author	blic of Bangladesh nment gargaon, aka 1207. Dat action and Utilizatio aste in Dhaka" of Wo oncern of Banglade Designated National Convention on Cli owing terms and convention on Cli owing terms and convention on Cli owing terms and convention of Understa e project. operational within f existing Matuail land ting agency of the pr rity of the project.	e:16 / 09 /2004. In at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has inditions. Naste Concern of f the projects by a inding (MOU) with S to 7 months after fill site. project.	
R Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	tef.: Paribesh/Te bef.: Endorsem Site in Dha (WWR) B National A National A ne undersigned i angladesh forme dorsed the abov The proponent Bangladesh w validator accre The proponent Dhaka City Con The proponents Dhaka City Cor National CDM (The proponents	Government of t Depa Paribes Sher-e-f ech. (Int. Con.)/350/20 nent of two projects (1 iaka" and (2) Composi 3V of the Netherland Authority of Banglades is pleased to convey ied under United Na ve mentioned projects W vill make necessary a edited to the CDM Exe its of the projects will proration (DCC) befor ts of the projects will with DCC and taking p is of the projects would point on would be the	the People's Reput artment of Environ sh Bhaban, E/16 Ag Bangla Nagar, Dha 003/2632. I) Landfill Gas Extra sting of Organic Wa ds and Waste Co sh. I that the two tier D ations Framework s subject to the folk WWR BV of the fl arrangement for an ecutive Board of the fill sign a memora re implementing the make the projects cossession of the ei d be the implementing e controlling author	blic of Bangladesh nment gargaon, aka 1207. Dat Dat action and Utilizatio iste in Dhaka" of Wo oncern of Banglade Designated National Convention on Cli owing terms and con Netherlands and Wo n early validation of e UNFCCC. andum of Understa e project. operational within fe existing Matuail land ting agency of the project.	te:16 / 09 /2004. In at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has nditions. Waste Concern of f the projects by a inding (MOU) with S to 7 months after fill site. project.	
R Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	tef.: Paribesh/Te ub.: Endorsem Site in Dha (WWR) B National A National A ne undersigned i angladesh forma dorsed the abov The proponent Bangladesh w validator accre The proponent Dhaka City Col The proponents Dhaka City Cor National CDM (The proponents	Government of t Depa Paribes Sher-e-I ech. (Int. Con.)/350/20 nent of two projects (1 naka" and (2) Compose 3V of the Netherland Authority of Banglades is pleased to convey red under United Na ve mentioned projects W vill make necessary a adited to the projects w vill make necessary a adited to the CDM Exe its of the projects will proration (DCC) befor ts of the projects will with DCC and taking p is of the projects would proration would be the	the People's Reput artment of Enviroi sh Bhaban, E/16 Ag Bangla Nagar, Dha 003/2632. I) Landfill Gas Extra sting of Organic Wa ds and Waste Co sh. I that the two tier D ations Framework s subject to the folk WWR BV of the fl arrangement for an ecutive Board of the fill sign a memora re implementing the make the projects possession of the ei d be the implementing e controlling author	blic of Bangladesh mment gargaon, aka 1207. Dat action and Utilizatio iste in Dhaka" of Wo oncern of Banglade Designated National Convention on Cli owing terms and col Netherlands and W n early validation of e UNFCCC. andum of Understa e project. operational within 6 ixisting Matuail land ting agency of the p rity of the project.	te:16 / 09 /2004. In at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has nditions. Waste Concern of f the projects by a Inding (MOU) with 6 to 7 months after fill site. project.	
R Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	tef.: Paribesh/Te ub.: Endorsem Site in Dha (WWR) B National A ne undersigned i angladesh forme dorsed the abov The proponen Bangladesh w validator accre The proponent Bangladesh w validator accre The proponent Dhaka City Cor Dhaka City Cor National CDM (The proponents	Paribes Sher-e-I Sher-e-I ech. (Int. Con.)/350/20 nent of two projects (1 naka" and (2) Composi 3V of the Netherland Authority of Banglades is pleased to convey red under United Na ve mentioned projects W vill make necessary a edited to the projects will report on (DCC) befor ts of the projects will with DCC and taking p is of the projects would point on the projects would with DCC and taking p	sh Bhaban, E/16 Ag Bangla Nagar, Dha 003/2632. I) Landfill Gas Extra sting of Organic Wa ds and Waste Co sh. I that the two tier D ations Framework s subject to the folk WWR BV of the f arrangement for an ecutive Board of the fill sign a memora re implementing the make the projects possession of the e d be the implementing at the function of the e	gargaon, aka 1207. Dat action and Utilizatio iste in Dhaka" of We oncern of Banglade Designated National Convention on Cli owing terms and col Netherlands and We n early validation of e UNFCCC. andum of Understa e project. operational within 6 existing Matuail land thing agency of the p rity of the project.	e:16 / 09 /2004. In at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has nditions. Waste Concern of f the projects by a inding (MOU) with 6 to 7 months after fill site. project.	
R Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	tef.: Paribesh/Te ub.: Endorsem Site in Dha (WWR) Bi National A ne undersigned i angladesh forme bdorsed the abov The proponen Bangladesh wi validator accre The proponent Signing MOU w The proponents Dhaka City Cor National CDM (The proponents	ech. (Int. Con.)/350/20 nent of two projects (1 laka" and (2) Composi- 3V of the Netherland Authority of Banglades is pleased to convey led under United Na we mentioned projects W vill make necessary a adited to the CDM Exe the of the projects will with DCC and taking p is of the projects would with DCC and taking p	003/2632. I) Landfill Gas Extra sting of Organic Wa ds and Waste Co sh. I that the two tier D ations Framework s subject to the folk WWR BV of the f arrangement for an ecutive Board of the cutive Board of the ill sign a memora re implementing the make the projects cossession of the ei- d be the implementing e controlling author	Dat action and Utilizatio aste in Dhaka" of Wo oncern of Banglade Designated National Convention on Cli owing terms and con Netherlands and Wo n early validation of e UNFCCC. andum of Understa e project. operational within f existing Matuail land ting agency of the p rity of the project.	te:16 / 09 /2004. In at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has nditions. Waste Concern of f the projects by a inding (MOU) with S to 7 months after fill site. project.	
Su Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	ub.: Endorsem Site in Dha (WWR) B National A ne undersigned i angladesh forme dorsed the abov The proponen Bangladesh w validator accre The proponent Dhaka City Con The proponents Dhaka City Cor National CDM (The proponents	nent of two projects (1 naka" and (2) Composi 3V of the Netherland Authority of Banglades is pleased to convey red under United Na we mentioned projects nt of the projects W vill make necessary a adited to the CDM Exe the of the projects will proporation (DCC) before ts of the projects will with DCC and taking p is of the projects would proporation would be the Committee will manife	1) Landfill Gas Extra sting of Organic Wa ds and Waste Co sh. • that the two tier D ations Framework s subject to the folk WR BV of the fl arrangement for an ecutive Board of the fill sign a memora re implementing the make the projects possession of the e d be the implement e controlling author	action and Utilizatio aste in Dhaka" of Wo oncern of Banglade Designated National Convention on Cli owing terms and convention of the early validation of e UNFCCC. andum of Understa e project. operational within f existing Matuail land thing agency of the p rity of the project.	n at Matuail Landfill orld Wide Recycling ash by Designated Authority (DNA) of mate Change has nditions. Waste Concern of f the projects by a Inding (MOU) with 6 to 7 months after fill site. project.	
Th Ba en 1. 2. 3. 4. 5. 6. 7. 8.	the undersigned is angladesh forme idorsed the above The proponent Bangladesh wi validator accre The proponent Dhaka City Con The proponents Dhaka City Cor National CDM (The proponents	is pleased to convey ned under United Na we mentioned projects int of the projects W will make necessary a edited to the CDM Exe its of the projects will with DCC and taking p ts of the projects would rporation would be the Committee will monitor	a that the two tier D ations Framework s subject to the folk WWR BV of the f arrangement for an ecutive Board of the rill sign a memora re implementing the make the projects possession of the e d be the implement e controlling author	Designated National Convention on Cli owing terms and convention Netherlands and V n early validation of e UNFCCC. andum of Understa e project. operational within 6 existing Matuail land thing agency of the p rity of the project.	Authority (DNA) of mate Change has nditions. Naste Concern of f the projects by a nding (MOU) with 6 to 7 months after fill site. project.	
1. 2. 3. 4. 5. 6. 7. 8.	The proponent Bangladesh w validator accre The proponent Dhaka City Con The proponents Dhaka City Cor National CDM (The proponents	nt of the projects W will make necessary a edited to the CDM Exe its of the projects w proration (DCC) before ts of the projects will with DCC and taking p is of the projects would rporation would be the Committee will maniful	WWR BV of the arrangement for ar ecutive Board of the vill sign a memora re implementing the make the projects possession of the e id be the implement e controlling author	Netherlands and W n early validation of e UNFCCC. andum of Understa operational within f existing Matuail land thing agency of the p rity of the project.	Waste Concern of f the projects by a inding (MOU) with 6 to 7 months after fill site. project.	
3. 4. 5. 6. 7. 8.	Dhaka City Con The proponent signing MOU w The proponents Dhaka City Cor National CDM (The proponents	proporation (DCC) before ts of the projects will with DCC and taking p is of the projects would rporation would be the Committee will monitor	The implementing the make the projects possession of the end of the the implement e controlling author	e project. operational within f existing Matuail land ting agency of the p rity of the project.	5 to 7 months after fill site. project.	
4. 5. 6. 7. 8.	signing MOU w The proponents Dhaka City Cor National CDM (The proponents	with DCC and taking p is of the projects would rporation would be the	Id be the implement controlling author	ting agency of the project.	fill site. project.	
4. 5. 6. 7. 8.	The proponents Dhaka City Cor National CDM (The proponents	ts of the projects would rporation would be the	ld be the implement e controlling author	ting agency of the p rity of the project.	project.	
5. 6. 7. 8.	Dhaka City Cor National CDM (The proponents	rporation would be the	e controlling author	rity of the project.		
6. 7. 8.	National CDM (The proponents	Committee will monite				
7. 8.	The proponents	Committee will monito	or the progress of the	he project.		
8.	to the National	s of the projects woul CDM Committee.	ld submit a quarter	rly monitoring and p	erformance report	
	Power Develop buy the product that respect the respective agen	oment Board (PDB) a ced electricity at a neg he proponents of the ncies.	and/or Dhaka Elect gotiated price inco e projects would	tricity Supply Authon Informity with the m enter into an agree	rity (DESA) would arket price and in sements with the	
				\bigcirc	\sum	
				(Mohammad Director (T &	Reazuddin) echnical)	
				Member S National CDM	ecretary I Committee	
	Mr. Maarten (J. Managing Direct World Wide Rec Riiksstratweg 10	. M.W.) Van Dijk stor cycling B.V. 02. 7383 AV Voorst				
F	P.O. Box 90, 73 The Netherlands	190 AR Twello				

page 69

UNFCC

			000 2 JUD4114	WHOLE GUINGERN	PAGE 02
*					
	C	opy to:			
	1.	Secretary	, Ministry of Environmen	t and Forest, Bangladesh Secretariat	Dhaka
	2.	Secretary	, Energy & Mineral Reso	purces Division, Bandladesh Secretaria	Dhoke
	3.	Secretary	. Local Government Divi	sion, Bangladesh Sacretariat, Dhaka	, Dilaka.
	4.	Chief Exe	cutive Officer, Dhaka Cit	v Corporation, Nagar Bhabao, Dhaka	
	5.	Chief Con	servancy Officer, Dhaka	City Corporation Nagar Bhahan Dhak	
	6.	Director G Mineral Re	eneral, Project Manager esources, BTMC Bhabar	ment Unit, Power Division, Ministry of P	ower, Energy &
	7.	PS to Prin	cipal Secretary, Prime M	inister's Office Old Airport Pood Dhale	- 1215
	√8.	Mr. A. H. N Road # 7,	Nd. Maqsood Sinha, Exe Block - G. Banani Model	cutive Director, Waste Concern, House	a. # 21 (Side B),
	9.	Executive the official	Secretary, UNFCCC (He	is requested to take necessary steps t	o place it in
•					
				*	